Drought alters carbon (C) allocation within trees, thereby impairing tree growth. Recovery of root and leaf functioning and prioritized C supply to sink tissues after drought may compensate for drought-induced reduction of assimilation and growth. It remains unclear if C allocation to sink tissues during and following drought is controlled by altered sink metabolic activities or by the availability of new assimilates. Understanding such mechanisms is required to predict forests’ resilience to a changing climate. We investigated the impact of drought and drought release on C allocation in a 100-y-old Scots pine forest. We applied 13CO2 pulse labeling to naturally dry control and long-term irrigated trees and tracked the fate of the label in above- and belowground C pools and fluxes. Allocation of new assimilates belowground was ca. 53% lower under nonirrigated conditions. A short rainfall event, which led to a temporary increase in the soil water content (SWC) in the topsoil, strongly increased the amounts of C transported belowground in the nonirrigated plots to values comparable to those in the irrigated plots. This switch in allocation patterns was congruent with a tipping point at around 15% SWC in the response of the respiratory activity of soil microbes. These results indicate that the metabolic sink activity in the rhizosphere and its modulation by soil moisture can drive C allocation within adult trees and ecosystems. Even a subtle increase in soil moisture can lead to a rapid recovery of belowground functions that in turn affects the direction of C transport in trees.
Microbes are widely distributed in soils and play a very important role in nutrient cycling and ecosystem services. To understand the biogeographic distribution of forest soil bacteria, we collected 115 soil samples in typical forest ecosystems across eastern China to investigate their bacterial community compositions using Illumina MiSeq high throughput sequencing based on 16S rRNA. We obtained 4,667,656 sequences totally and more than 70% of these sequences were classified into five dominant groups, i.e., Actinobacteria, Acidobacteria, Alphaproteobacteria, Verrucomicrobia, and Planctomycetes (relative abundance >5%). The bacterial diversity showed a parabola shape along latitude and the maximum diversity appeared at latitudes between 33.50°N and 40°N, an area characterized by warm-temperate zones and moderate temperature, neutral soil pH and high substrate availability (soil C and N) from dominant deciduous broad-leaved forests. Pairwise dissimilarity matrix in bacterial community composition showed that bacterial community structure had regional similarity and the latitude of 30°N could be used as the dividing line between southern and northern forest soils. Soil properties and climate conditions (MAT and MAP) greatly accounted for the differences in the soil bacterial structure. Among all soil parameters determined, soil pH predominantly affected the diversity and composition of the bacterial community, and soil pH = 5 probably could be used as a threshold below which soil bacterial diversity might decline and soil bacterial community structure might change significantly. Moreover, soil exchangeable cations, especially Ca2+ (ECa2+) and some other soil variables were also closely related to bacterial community structure. The selected environmental variables (21.11%) explained more of the bacterial community variation than geographic distance (15.88%), indicating that the edaphic properties and environmental factors played a more important role than geographic dispersal limitation in determining the bacterial community structure in Chinese forest soils.
Above and belowground compartments in ecosystems are closely coupled on daily to annual timescales. In mature forests, this interlinkage and how it is impacted by drought is still poorly understood. Here, we pulse‐labelled 100‐year‐old trees with 13CO2 within a 15‐year‐long irrigation experiment in a naturally dry pine forest to quantify how drought regime affects the transfer and use of assimilates from trees to the rhizosphere and associated microbial communities. It took 4 days until new 13C‐labelled assimilates were allocated to the rhizosphere. One year later, the 13C signal of the 3‐h long pulse labelling was still detectable in stem and soil respiration, which provides evidence that parts of the assimilates are stored in trees before they are used for metabolic processes in the rhizosphere. Irrigation removing the natural water stress reduced the mean C residence time from canopy uptake until soil respiration from 89 to 40 days. Moreover, irrigation increased the amount of assimilates transferred to and respired in the soil within the first 10 days by 370%. A small precipitation event rewetting surface soils altered this pattern rapidly and reduced the effect size to +35%. Microbial biomass incorporated 46 ± 5% and 31 ± 7% of the C used in the rhizosphere in the dry control and irrigation treatment respectively. Mapping the spatial distribution of soil‐respired 13CO2 around the 10 pulse‐labelled trees showed that tree rhizospheres extended laterally 2.8 times beyond tree canopies, implying that there is a strong overlap of the rhizosphere among adjacent trees. Irrigation increased the rhizosphere area by 60%, which gives evidence of a long‐term acclimation of trees and their rhizosphere to the drought regime. The moisture‐sensitive transfer and use of C in the rhizosphere has consequences for C allocation within trees, soil microbial communities and soil carbon storage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.