Young children are surprisingly judicious imitators, but there are also times when their reproduction of others' actions appears strikingly illogical. For example, children who observe an adult inefficiently operating a novel object frequently engage in what we term overimitation, persistently reproducing the adult's unnecessary actions. Although children readily overimitate irrelevant actions that even chimpanzees ignore, this curious effect has previously attracted little interest; it has been assumed that children overimitate not for theoretically significant reasons, but rather as a purely social exercise. In this paper, however, we challenge this view, presenting evidence that overimitation reflects a more fundamental cognitive process. We show that children who observe an adult intentionally manipulating a novel object have a strong tendency to encode all of the adult's actions as causally meaningful, implicitly revising their causal understanding of the object accordingly. This automatic causal encoding process allows children to rapidly calibrate their causal beliefs about even the most opaque physical systems, but it also carries a cost. When some of the adult's purposeful actions are unnecessary-even transparently so-children are highly prone to misencoding them as causally significant. The resulting distortions in children's causal beliefs are the true cause of overimitation, a fact that makes the effect remarkably resistant to extinction. Despite countervailing task demands, time pressure, and even direct warnings, children are frequently unable to avoid reproducing the adult's irrelevant actions because they have already incorporated them into their representation of the target object's causal structure.causal learning ͉ cognitive development ͉ imitation
Children are generally masterful imitators, both rational and flexible in their reproduction of others' actions. After observing an adult operating an unfamiliar object, however, young children will frequently overimitate, reproducing not only the actions that were causally necessary but also those that were clearly superfluous. Why does overimitation occur? We argue that when children observe an adult intentionally acting on a novel object, they may automatically encode all of the adult's actions as causally meaningful. This process of automatic causal encoding (ACE) would generally guide children to accurate beliefs about even highly opaque objects. In situations where some of an adult's intentional actions were unnecessary, however, it would also lead to persistent overimitation. Here, we undertake a thorough examination of the ACE hypothesis, reviewing prior evidence and offering three new experiments to further test the theory. We show that children will persist in overimitating even when doing so is costly (underscoring the involuntary nature of the effect), but also that the effect is constrained by intentionality in a manner consistent with its posited learning function. Overimitation may illuminate not only the structure of children's causal understanding, but also the social learning processes that support our species' artefact-centric culture.
Children are generally masterful imitators, both rational and flexible in their reproduction of others' actions. After observing an adult operating an unfamiliar object, however, young children will frequently overimitate, reproducing not only the actions that were causally necessary but also those that were clearly superfluous. Why does overimitation occur? We argue that when children observe an adult intentionally acting on a novel object, they may automatically encode all of the adult's actions as causally meaningful. This process of automatic causal encoding (ACE) would generally guide children to accurate beliefs about even highly opaque objects. In situations where some of an adult's intentional actions were unnecessary, however, it would also lead to persistent overimitation. Here, we undertake a thorough examination of the ACE hypothesis, reviewing prior evidence and offering three new experiments to further test the theory. We show that children will persist in overimitating even when doing so is costly (underscoring the involuntary nature of the effect), but also that the effect is constrained by intentionality in a manner consistent with its posited learning function. Overimitation may illuminate not only the structure of children's causal understanding, but also the social learning processes that support our species' artefact-centric culture.
The goal of this study was to provide structural information about the regulatory domains of double-headed smooth muscle heavy meromyosin, including the N terminus of the regulatory light chain, in both the phosphorylated and unphosphorylated states. We extended our previous photo-cross-linking studies (Wu, X., Clack, B. A., Zhi, G., Stull, J. T., and Cremo, C. R. Both cross-links were to the partner regulatory light chain and occurred in unphosphorylated but not phosphorylated heavy meromyosin. Using these data, data from our previous study, and atomic coordinates from various myosin isoforms, we have constructed a structural model of the regulatory domain in an unphosphorylated double-headed molecule that predicts the general location of the N terminus. The implications for the structural basis of the phosphorylation-mediated regulatory mechanism are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.