During the recent Covid-19 pandemic, additive Technology and Social Media were used to tackle the shortage of Personal Protective Equipment. A literature review and a social media listening software were employed to explore the number of the users referring to specific keywords related to 3D printing and PPE. Additionally, the QALY model was recruited to highlight the importance of the PPE usage. More than 7 billion users used the keyword covid or similar in the web while mainly Twitter and Facebook were used as a world platform for PPE designs distribution through individuals and more than 100 different 3D printable PPE designs were developed.
One of the most promising techniques of recent research is adsorption. This technique attracts great attention in environmental technology, especially in the decontamination of water and wastewaters. A “hidden” point of the above is the cost of adsorbents. As can be easily observed in the literature, there is not any mention about the synthesis cost of adsorbents. What are the basic criteria with which an industry can select an adsorbent? What is the synthesis (recipe) cost? What is the energy demand to synthesize an efficient material? All of these are questions which have not been answered, until now. The reason for this is that the estimation of adsorbents’ cost is relatively difficult, because too many cost factors are involved (labor cost, raw materials cost, energy cost, tax cost, etc.). In this work, the first estimation cost of adsorbents is presented, taking into consideration all of the major factors which influence the final value. To be more comparable, the adsorbents used are from a list of polymeric materials which are already synthesized and tested in our laboratory. All of them are polymeric materials with chitosan as a substrate, which is efficiently used for the removal of heavy metal ions.
Over the past 30 years, there have been significant advancements in the field of nanomaterials. The possibility to use them in applications such as cancer treatment is extremely promising; however, the toxicity of many nanomaterials as well as the high costs associated with their use is still a concern. This paper aims to study the connection between nanomaterial toxicity and cost. This synergy may be interpreted as a different version of the classic "Prisoner's Dilemma" game, which in this case attempts to explain the possible outcomes of cooperation versus conflict between science advocating for the use of high-risk, possibly toxic materials due to their high returns, and society that might be dubious about the use of high-risk materials. In an effort to create diverse evaluation methodologies, this work uses a forecast horizon to evaluate the current status and expected future of the nanomaterials market. The historical progress of each market, toxicity information, and possible returns stemming from their use is taken into account to analyze the predictions. Our results suggest various trends for the associated costs and nanotoxicity of the studied materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.