The plant-pathogenic bacterium Xylella fastidiosa which causes significant diseases to various plant species worldwide, is exclusively transmitted by xylem sap-feeding insects. Given the fact that X. fastidiosa poses a serious potential threat for olive cultivation in Greece, the main aim of this study was to investigate the genetic variation of Greek populations of three spittlebug species (Philaenus spumarius, P. signatus and Neophilaenus campestris), by examining the molecular markers Cytochrome Oxidase I, cytochrome b and Internal Transcribed Spacer. Moreover, the infection status of the secondary endosymbionts Wolbachia, Arsenophonus, Hamiltonella, Cardinium and Rickettsia, among these populations, was determined. According to the results, the ITS2 region was the less polymorphic, while the analyzed fragments of COI and cytb genes, displayed high genetic diversity. The phylogenetic analysis placed the Greek populations of P. spumarius into the previously obtained Southwest clade in Europe. The analysis of the bacterial diversity revealed a diverse infection status. Rickettsia was the most predominant endosymbiont while Cardinium was totally absent from all examined populations. Philaenus spumarius harbored Rickettsia, Arsenophonus, Hamiltonella and Wolbachia, N. campestris carried Rickettsia, Hamiltonella and Wolbachia while P. signatus was infected only by Rickettsia. The results of this study will provide an important knowledge resource for understanding the population dynamics of vectors of X. fastidiosa with a view to formulate effective management strategies towards the bacterium.
The brown marmorated stink bug, Halyomorpha halys (Hemiptera: Pentatomidae), is an invasive species in North America and Europe that damages many different host plants. Substantial work has been conducted on the genetic diversity and invasion pathways of H. halys in some of the countries where it has been found, based on mitochondrial sequences. The main objective of the present study was to further explore the genetic diversity of invasive populations of H. halys exploiting both mitochondrial and nuclear markers. We used two molecular markers: the mitochondrial Cytochrome Oxidase I (COI) gene, an ideal standardized molecular marker for distinguishing closely related species, and the ribosomal Internal Transcribed Spacer 1 (ITS1), because only a few sequences of H. halys exist to this point in global databases. We used specimens from eight populations from Greece, Italy, Canada, and the US. Among the 14 haplotypes retrieved based on the mtCOI gene, two of them (H162–H163) were detected for the first time. These two haplotypes were found in specimens from Canada, Italy, and the US. Concerning the ITS1 region, 24 haplotypes were identified, with 15 being unique for a sampled population. In Greece and the US, 14 and 12 haplotypes were found, respectively, with 7 and 6 of them being unique for Greece and the US, respectively. Our analysis of the nuclear genes of H. halys indicates high genetic diversity of the invading populations in North America and Europe.
Aphid species (Hemiptera: Aphididae) are among the most serious pests for citrus cultivation throughout the world causing substantial crop damages. Accurate identification of aphids to the species level can be difficult, though being crucial for their effective management. In this study, a molecular diagnostic assay for distinguishing eleven aphid species was developed. A fragment of the mitochondrial Cytochrome Oxidase I (mtCOI) gene was used and a Polymerase Chain Reaction–Restriction Fragment Length Polymorphism (PCR–FLP) analysis with five restriction enzymes, based on DNA sequence polymorphisms, was applied to differentiate the eleven aphid species. This molecular technique allows aphid species at any life stage to be discriminated accurately and simply and can be a useful tool for monitoring the populations of economically important aphid species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.