In accordance with the developing trend of “safety, comfort and low-carbon” technology, the market for intelligent X-by-wire chassis is huge. A new requirement of the X-by-wire system, including the response, accuracy, energy consumption and fault-tolerance, is put forward. Based on the analysis of the structure and design flow of the brake-by-wire (BBW) system, this paper analyzes the research status and development trend of the control methods of braking force, coordination control strategies and fault-tolerant control of the BBW system. The application possibilities of direct-driving technology in the BBW system are analyzed. At present, the key points of research focus on considering the influence of the multi-field coupling effect in the design, observing and compensating various nonlinear factors, and having a higher requirement for fault-tolerant control. Finally, an intelligent direct-driving BBW system is proposed as a research direction, which takes high efficiency and energy saving as a foothold and aims at breakthroughs in dynamic response, control accuracy and fault-tolerant abilities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.