Thin-film coatings have been commonly used in the automotive industry for a variety of applications. Thermal barrier coatings (TBCs) are designed to extend the life of combustors and turbine blades while mitigating high-temperature issues. In this study, an attempt has been made to develop a singlelayer thin film as TBCs for engine applications. Yttria Stabilized Zirconia(YSZ) and Lanthanum Zirconate(LZ) were selected as the coating materials. The physical and chemical characteristics of target materials were studied using Scanning Electron Microscope (SEM), Energy Dispersive x-ray Spectroscopy (EDS), and x-ray Diffraction Analysis (XRD). FCD 400 has been taken as the substrates for this study. In general, TBCs thicknesses are usually about 100-300 μm, while in this work, a coating thickness of 750 nm is attempted using EB-PVD and its performance was evaluated. The mechanical, tribological, and thermal behaviors of the uncoated and coated substrates were characterized as per ASTM standards. Maximum hardness of 3.68 GPa was observed on the YSZ coated substrates. The average Coefficient of Friction (COF) and Coefficient of Thermal Expansion(CTE) values of YSZ coated substrates were 0.334 and 1.33×10 -5 K −1 , respectively, which were comparatively lower than LZ and uncoated substrates. On the contrary, the adhesive characteristics of YSZ and LZ coated substrates were enhanced, which was evident from their results of 6.28N and 6.19N respectively. The thermal conductivity of LZ coated substrates was found to be 3.2% lower than YSZ and 11% lower than uncoated substrates, respectively. From the results, it is observed that LZ thin film coating have better thermal properties than YSZ, which is best suited for TBCs application. Following evaluation of thin-film coatings, confirms that thin-film TBCs are a reliable approach for thermal and wear production as compared to thick TBCs, and their extended life could improve productivity and economic benefits for automotive industries.
The finite element (FE) analysis on the effect of extrusion process parameter namely, extrusion ratio at different billet temperatures on the plastic strain and strain rate of aluminium matrix composite during hot extrusion process has been dealt. The dynamic explicit FE code in ANSYS 15.0 workbench was used for simulation. The FE analysis was carried out on the SiC reinforced aluminium matrix composites for three extrusion ratios 4:1, 8:1 and 15:1, for the billet temperatures in the range 350 °C -450 °C in steps of 50 °C. The plastic strain and strain rate were found to increase with increase in the extrusion ratio. A minimum strain and strain rate was found to occur at the billet temperature of 450 °C. The silicon carbide particles reinforced aluminium matrix composites were then extruded at the optimised temperature of 450 °C for various extrusion ratios as mentioned above. The effect of extrusion ratio on the microstructure and surface quality of extruded rod was studied.
Changing circumstances across the world require armoured fighting vehicle (AFV) of a country to be more agile, easily manoeuverable and transportable besides other key requirements like firepower and protection. Therefore, the AFV should be as light as possible. The use of conventional materials and techniques do not fulfill the requirement of light weight AFV. The composite materials having high specific modulus, specific strength and directional properties are the alternative substitution for reducing the weight. A customized design approach with proper selection of composite material is essential to make AFV components with required properties at lower weight as compared to the traditional approach. Special properties like resistance to moisture, solvents, UV degradation etc. could be imparted to the composite components by the use of proper additives or fillers. This paper deals with the development of dynamic members like road wheel, top roller and axle arm, whose count is always more in any AFVs, using carbon-epoxy composite material. The details of composite materials used and the manufacturing processes adopted are briefly discussed. The static load test carried out to assess the structural integrity as well as non-destructive tests (NDT) performed to detect the defects are also dealt in detail. Preliminary Finite Element Analysis and Multi-body Dynamic Analysis have also been discussed. These analyses have been done mainly to understand the sustainability and performance of the components developed under the given loading conditions.
Application of novel engineering materials and advanced technology has been increasing tremendously in many industrial needs. Among those challenging manufacturing methods, conventional machining is one of the proven and prominent processes. Although, fast growing and newer developments in modern manufacturing industries are posses the tough fight on current requirements. On the other hand, continuously developing new technology and trends of advanced machining methods on modern technology for industries and academicians are not well established in the open web sources. Hence, this chapter will be eye opener for both industrialists and researchers about the various novel techniques, trends, and developments in conventional machining.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.