Purpose Mitigating coupling effects between coil elements represents a continuing challenge. Here, we present a 16‐bowtie slot volume coil arranged in eight independent dual‐slot modules without the use of any decoupling circuits. Methods Two electrically short “bowtie” slot antennas were used to form a “module.” A bowtie configuration was chosen because electromagnetic modeling results show that bowtie slots exhibit improved B1+Pin$$ \frac{B_1^{+}}{\sqrt{P_{in}}} $$ efficiency when compared to thin rectangular slots. An eight‐module volume coil was evaluated through electromagnetic modeling, bench tests, and MRI experiments at 4.7 T. Results Bench tests indicate that worst‐case coupling between modules did not exceed −14.5 dB. MR images demonstrate well‐localized patterns about single excited modules confirming the low coupling between modules. Homogeneous MR images were acquired from a synthesized quadrature birdcage transmit mode. MRI experiments show that the RF power requirements for the proposed coil are 9.2 times more than a birdcage coil. Whereas from simulations performed to assess the proposed coil losses, the total power dissipated in the phantom was 1.1 times more for the birdcage. Simulation results at 7 T reveal an equivalent B1+ homogeneity when compared with an eight‐dipole coil. Conclusion Although exhibiting higher RF power requirements, as a transmit coil when the power availability is not a restriction, the inherently low coupling between electrically short slots should enable the use of many slot elements around the imaging volume. The slot module described in this paper should be useful in the design of multi‐channel transmit coils.
Evidence indicates that excess RF power from coil’s associated circuitry could cause injuries to patients. Slot elements have been investigated earlier and demonstrated good potential when used for multi-channel RF coils. Here we investigate the potential of using the extended metallization of slot elements to shield stray electric field generated from RF coil associated circuitry. RF heating experiment was designed to compare the temperature of the phantom with and without using the slot’s extended metallization to shield the associated circuitry. Experimental results demonstrated an observable reduction in the phantom temperature resulting from extending the slots metallization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.