This work was supported by grants from ANPCyT (PICT 2015-1117), CONICET (PIP 380), Cancer National Institute (INC) and Roemmers Foundation, Argentina. The authors declare no conflicts of interest.
Polycystic ovary syndrome (PCOS) is a frequent pathology that affects more than 5% of women of reproductive age. Among other heterogeneous symptoms, PCOS is characterized by abnormalities in angiogenesis. Metformin has been introduced in the treatment of PCOS to manage insulin resistance and hyperglycemia. Besides its metabolic effects, metformin has been shown to improve ovulation, pregnancy and live birth rates in PCOS patients. In the present study, we used a dehydroepiandrosterone-induced PCOS rat model to analyze the effect of metformin administration on ovarian angiogenesis. We found that metformin was able to restore the increased levels of vascular endothelial growth factor, angiopoietin (ANGPT)1, and ANGPT1/ANGPT2 ratio and the decreased levels of platelet-derived growth factor B and platelet-derived growth factor D observed in the dehydroepiandrosterone-treated rats. These effects could take place, at least in part, through a decrease in the levels of serum insulin. We also found an improvement in follicular development, with a lower percentage of small follicles and cysts and a higher percentage of antral follicles and corpora lutea after metformin administration. The improvement in ovarian angiogenesis is likely to restore the accumulation of small follicles observed in PCOS rats and to reduce cyst formation, thus improving follicular development and the percentage of corpora lutea. These results open new insights into the study of metformin action not only in glucose metabolism but also in ovarian dysfunction in PCOS women.
Polycystic ovary syndrome (PCOS) is the most common endocrinological pathology among women of reproductive age. It is characterized by anovulation, oligo- or amenorrhea, hyperandrogenism, obesity, and insulin resistance. PCOS patients present with elevated levels of vascular endothelial growth factor (VEGF) in serum and follicular fluid. In this study, we examined the ovarian expression of angiopoietins (ANGPT) and their receptor tyrosine kinase receptor (TIE2), involved in the stabilization of blood vessels, in a rat model of dehydroepiandrosterone-induced PCOS. We also analyzed the effect of ovarian VEGF inhibition on ANGPT/TIE2, follicular development, and vascular stability. VEGF levels were increased in the PCOS ovaries, whereas the levels of its receptor fetal liver kinase-1 were decreased. In addition, the periendothelial cell area and the ANGPT1 to ANGPT2 ratio in the ovary were increased in the PCOS group. Percentage of primary follicles was increased and the percentage of preantral follicles and corpora lutea was decreased in the PCOS group. VEGF inhibition decreased the percentage of primary follicles close to control values. Interestingly, despite the presence of cysts in the ovaries from VEGF inhibitor-treated PCOS rats, its percentage was lower than the PCOS group without treatment. In summary, this study describes an alteration not only in the VEGF/fetal liver kinase-1 system but also in the ANGPT/TIE2 system in a dehydroepiandrosterone-induced PCOS rat model. This leads to an increase in periendothelial cell recruitment. We also demonstrated that ovarian VEGF inhibition can partially restore the accumulation of small follicles in PCOS rats and reduces cyst formation, improving ovulation and follicular development. Therefore, the inhibition of VEGF could be considered, in addition to other currently applied treatments, as a new strategy to be studied in PCOS patients to restore ovarian function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.