Rincón-Sánchez AR. Cu/Zn superoxide dismutase (SOD1) induction is implicated in the antioxidative and antiviral activity of acetylsalicylic acid in HCV-expressing cells. Am J Physiol Gastrointest Liver Physiol 302: G1264 -G1273, 2012. First published March 22, 2012 doi:10.1152/ajpgi.00237.2011We evaluated the participation of oxidative stress in the negative regulation of hepatitis C virus (HCV)-RNA induced by acetylsalicylic acid (ASA). We used the HCV subgenomic replicon cell system that stably expresses HCV-nonstructural proteins (Huh7 HCV replicon cells) and the parental cell line. Cells were exposed to 4 mM ASA at different times (12-72 h), and pyrrolidine dithiocarbamate (PDTC) was used as an antioxidant control. Reactive oxygen species (ROS) production, oxidized protein levels, cytosolic superoxide dismutase (Cu/Zn-SOD), and glutathione peroxidase (GPx) activity were measured to evaluate oxidative stress. In addition, viral RNA and prostaglandin (PGE 2) levels were determined. We observed that ASA treatment decreased ROS production and oxidized protein levels in a time-dependent fashion in both parental and HCV replicon cells with a greater extent in the latter. Similar results were found with PDTC exposure. Average GPx activity was decreased, whereas a striking increase was observed in average cytosolic SOD activity at 48 and 72 h in both cells exposed to ASA, compared with untreated cells. HCV replicon cells showed higher levels of Cu/Zn-SOD expression (mRNA and protein) with ASA treatment (48 and 72 h), whereas NS5A protein levels showed decreased expression. In addition, we found that inhibition of SOD1 expression reversed the effect of ASA. Interestingly, PDTC downregulated HCV-RNA expression (55%) and PGE2 (60%) levels, imitating ASA exposure. These results suggest that ASA treatment could reduce cellular oxidative stress markers and modify Cu/Zn-
BackgroundThe olfactomedin-like domain (OLFML) is present in at least four families of proteins, including OLFML2A and OLFML2B, which are expressed in adult rat retina cells. However, no expression of their orthologous has ever been reported in human and baboon.ObjectiveThe aim of this study was to investigate the expression of OLFML2A and OLFML2B in ocular tissues of baboons (Papio hamadryas) and humans, as a key to elucidate OLFML function in eye physiology.MethodsOLFML2A and OLFML2B cDNA detection in ocular tissues of these species was performed by RT-PCR. The amplicons were cloned and sequenced, phylogenetically analyzed and their proteins products were confirmed by immunofluorescence assays.ResultsOLFML2A and OLFML2B transcripts were found in human cornea, lens and retina and in baboon cornea, lens, iris and retina. The baboon OLFML2A and OLFML2B ORF sequences have 96% similarity with their human’s orthologous. OLFML2A and OLFML2B evolution fits the hypothesis of purifying selection. Phylogenetic analysis shows clear orthology in OLFML2A genes, while OLFML2B orthology is not clear.ConclusionsExpression of OLFML2A and OLFML2B in human and baboon ocular tissues, including their high similarity, make the baboon a powerful model to deduce the physiological and/or metabolic function of these proteins in the eye.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.