Activity-based models for modeling individuals' travel demand have come to a new era in addressing individuals' and households' travel behavior on a disaggregate level. Quantitative data are mainly used in this domain to enable a realistic representation of individual choices and a true assessment of the impact of different Travel Demand Management measures. However, qualitative approaches in data collection are believed to be able to capture aspects of individuals' travel behavior that cannot be obtained using quantitative studies, such as detailed decision making process information. Therefore, qualitative methods may deepen the insight into human's travel behavior from an agentbased perspective. This paper reports on the application of a qualitative semi-structured interview method, namely the Causal Network Elicitation Technique (CNET), for eliciting individuals' thoughts regarding fun-shopping related travel decisions, i.e. timing, shopping location and transport mode choices. The CNET protocol encourages participants to think aloud about their considerations when making decisions. These different elicited aspects are linked with causal relationships and thus, individuals' mental representations of the task at hand are recorded. This protocol is tested in the city centre of Hasselt in Belgium, using 26 young adults as respondents. Response data are used to apply the Association Rules, a fairly common technique in machine learning. Results highlight different
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.