In this study we simulate the irrigation of tomato plants with As contaminated water (from 0 to 3.2 mg L -1 ) and investigate the effect of the application of silicon nanoparticle (Si NPs) in form of silicon dioxide (0, 250 and 1000 mg L -1 ) on As uptake and stress. Arsenics concentrations were determined in substrate and plant tissue at three different stratums. Phytotoxicity, As accumulation and translocation, photosynthetic pigments and antioxidant activity of enzymatic and non-enzymatic compounds were also determined. Irrigation of tomato plants with As contaminated water caused As substrate enrichment and As bioaccumulation (roots > leaves > steam) showing that the higher the concentration in irrigation water, the farther the contaminant owed and translocated through the different tomato stratums. Phytotoxicity was observed at low concentrations of As, while tomato yield increases increased at high concentrations.Application of Si NPs decreases As translocation, tomato yield, and root biomass. Increased production of photosynthetic pigments and improved enzymatic activity (CAT and APX) suggested tomato plant adaptation at high As concentrations in the presence of Si NPs. Our results reveal likely impacts of As and nanoparticles on tomato production in places where As in groundwater is common and might represent a risk.
Despite the documented effects on human and animal health, particles smaller than 0.1 µm in diameter found in soils, sediments, and the atmosphere remain unregulated. Yet, cerium and titanium oxide nanoparticles associated with traffic increase mortality, cause behavioral changes, and inhibit the growth in amphibians. Mites of the genus Hannemania spend their early stages in the soil before becoming exclusive parasites of amphibians. Unlike other mites, Hannemania is found inside the epidermis of amphibians, thus facilitating the intake of particles, and leading to direct and chronic exposure. To better understand this exposure path, we sampled amphibians hosting mites in a river potentially polluted by traffic sources. Particles collected from mites were studied by scanning electron microscopy and Raman spectroscopy while sediment samples were analyzed for total metal content by portable X-ray fluorescence. Our results indicate that sediment samples showed significant correlations between elements (Zr, Mn, Ti, Nb, Fe) often associated with components in catalytic converters and a level of Zr that exceeded the local geochemical background, thus suggesting an anthropic origin. Furthermore, particles adhered to mites exhibited the characteristic Raman vibrational modes of ceria (CeO2, 465 cm−1), ceria-zirconia (CeO2-ZrO2, 149, 251, and 314 cm−1), and rutile (TiO2, 602 cm−1), pointing out to the deterioration of catalytic converters as the most likely source. This research highlights both the importance of unregulated catalytic converters as a source of ultrafine Ce-Ti particle pollution and the role of sub-cutaneous mites as a vector of these particles for amphibian exposure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.