This paper presents a general formulation of the classical iterative-sweep power flow, which is widely known as the backward–forward method. This formulation is performed by a branch-to-node incidence matrix with the main advantage that this approach can be used with radial and meshed configurations. The convergence test is performed using the Banach fixed-point theorem while considering the dominant diagonal structure of the demand-to-demand admittance matrix. A numerical example is presented in tutorial form using the MATLAB interface, which aids beginners in understanding the basic concepts of power-flow programming in distribution system analysis. Two classical test feeders comprising 33 and 69 nodes are used to validate the proposed formulation in comparison with conventional methods such as the Gauss–Seidel and Newton–Raphson power-flow formulations.
En este artículo se presenta la propuesta de un algoritmo híbrido para la asignación de espectro en redes de radio cognitiva basado en los algoritmos Analytical Hierarchical Process (AHP) y Multi-Criteria Optimization and Compromise Solution (VIKOR), con el objetivo de mejorar el desempeño de la movilidad espectral de los usuarios secundarios en redes de radio cognitiva.Para evaluar el nivel de desempeño del algoritmo propuesto se realiza un análisis comparativo entre este, el Grey Relational Analysis (GRA) y una asignación de espectro aleatoria (Random). Los dos primeros trabajan con los mismos criterios de decisión: probabilidad de disponibilidad del canal, tiempo estimado de disponibilidad del canal, relación señal a ruido más interferencia y ancho de banda. A diferencia de los trabajos relacionados, la evaluación comparativa se validó a través de una traza de datos reales de ocupación espectral capturados en la banda de frecuencia GSM, que modela el comportamiento real de los usuarios licenciados. En la evaluación de desempeño se utilizaron cinco métricas de evaluación: número promedio acumulado de handoff fallidos, número promedio acumulado de handoff realizados, ancho de banda promedio, retardo promedio acumulado y throughput promedio acumulado.Los resultados del análisis comparativo con los otros dos algoritmos muestran que el algoritmo de handoff AHP-VIKOR propuesto provee el mejor desempeño en la movilidad espectral.
In this document is presented the implementation of the programming schedules as a method of lighting control, to perform a total saving and a personalized saving using neural networks. With the acquisition of a series of data about the operation of five lightings located in different parts of a specific house, it was designed a neural network to illuminate it and was implemented this design to the remaining. These neural networks were trained with input vectors; hour of the day, day of the week, holiday Monday's and their respective objective vectors "total saving and personalized saving" with the purpose of evaluating the performance of the neural networks in the optimization of methods for saving electric energy in residential lighting.
One of the most relevant aspects in the performance of wireless cognitive communications is the interference between users, especially the one that the secondary user can cause to the primary user. A proactive handoff strategy considerably reduces said interference. However, highly accurate prediction models are required. The following article seeks to compare the performance of four algorithms in the spectral occupancy of the primary user during a secondary user's communication. The performance of the algorithms is assessed by using five metrics: handoffs, failed handoffs, bandwidth, delay and throughput. The simulation scenario involves the communication of a secondary user during 10 minutes in a Wi-Fi network.
El objetivo de este artículo es presentar una revisión de técnicas basadas en inteligencia artificial para el proceso de toma de decisiones en redes de radio cognitiva. Las redes de radio cognitiva surgieron como una solución para resolver los problemas de asignación fija y de escasez del espectro, trabajan con un modelo de gestión que se denomina ciclo cognitivo, donde la toma de decisiones es clave, ya que permite seleccionar la oportunidad espectral más adecuada. A partir de literatura actualizada, se analizan estrategias que implementan máquinas de aprendizaje automático, algoritmos bioinspirados, teoría de juegos y algoritmos de consensos. Finalmente, el documento presenta los retos para el proceso de toma decisiones, donde se resalta la necesidad de seguir aprovechando los avances en inteligencia artificial para obtener mejores resultados. Sin embargo, las estrategias deben ser escalables para facilitar la carga computacional y poder resolver problemas de mayor complejidad.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.