Defect characterization in 1.2 MeV Ar8+ irradiated polycrystalline ZnO has been carried out by x-ray diffraction (XRD), scanning electron microscopy (SEM) along with electrical resistivity, and photoluminescence (PL) measurements at room temperature (RT). Interestingly, irradiation with the initial fluence (1×1015 ions/cm2) changes the color of the sample from white to orange while the highest irradiation fluence (5×1016 ions/cm2) makes it dark reddish brown that appears as black. XRD study reveals no significant change in the average grain size of the samples with irradiation fluence. Increase in surface roughness due to sputtering is clearly visible in SEM with highest fluence of irradiation. RT PL spectrum of the unirradiated sample shows intense ultraviolet (UV) emission (∼3.27 eV) and less prominent defect level emissions (2–3 eV). The overall emission is largely quenched due to initial irradiation fluence. Increasing the fluence of Ar beam further, UV emission is enhanced along with prominent defect level emissions. Remarkably, the resistivity of the irradiated sample with highest fluence is reduced by four orders of magnitude compared to that of the unirradiated sample. This is due to an increase in donor concentration as well as their mobility induced by high fluence of irradiation. Change in color in the irradiated samples indicates dominant presence of oxygen vacancies. It is now well known that oxygen vacancies are deep donors in ZnO. So oxygen vacancies, in principle, are not the source of conductivity in ZnO at RT. Simultaneous evolution of coloration and conductivity in ZnO, as is seen in this study, indicate that oxygen vacancies strongly influence the stability of shallow donors, presumably zinc interstitial related (highly mobile Zn interstitials also need to form defect pair/complex to be stable), which act as major source of carriers. Such a contention is in conformity with most recent theoretical calculations.
We have investigated the structure and magnetism of self-assembled, 20 nm diameter iron oxide nanoparticles covered by an oleic acid shell for scrutinizing their structural and magnetic correlations. The nanoparticles were spin-coated on an Si substrate as a single monolayer and as a stack of 5 ML forming a multilayer. X-ray scattering (reflectivity and grazing incidence small-angle scattering) confirms high in-plane hexagonal correlation and a good layering property of the nanoparticles. Using polarized neutron reflectivity we have also determined the long range magnetic correlations parallel and perpendicular to the layers in addition to the structural ones. In a field of 5 kOe we determine a magnetization value of about 80% of the saturation value. At remanence the global magnetization is close to zero. However, polarized neutron reflectivity reveals the existence of regions in which magnetic moments of nanoparticles are well aligned, while losing order over longer distances. These findings confirm that in the nanoparticle assembly the magnetic dipole-dipole interaction is rather strong, dominating the collective magnetic properties at room temperature.
We report about a combined structural and magnetometric characterization of self-assembled magnetic nanoparticle arrays. Monodisperse iron oxide nanoparticles with a diameter of 20 nm were synthesized by thermal decomposition. The nanoparticle suspension was spin-coated on Si substrates to achieve self-organized arrays of particles and subsequently annealed at various conditions. The samples were characterized by x-ray diffraction, and bright and dark field high resolution transmission electron microscopy. The structural analysis is compared to magnetization measurements obtained by superconducting quantum interference device magnetometry. We can identify either multi-phase Fe(x)O/γ-Fe(2)O(3) or multi-phase Fe(x)O/Fe(3)O(4) nanoparticles. The Fe(x)O/γ-Fe(2)O(3) system shows a pronounced exchange bias effect which explains the peculiar magnetization data found for this system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.