A new pile foundation system is being developed for renewable energy storage through a multi-disciplinary research project. This system utilizes the compressed air technology to store renewable energy inside the reinforced concrete pile foundation configured with hollowed sections. The compressed air can result in high air pressure to which the structural response of the pile foundation subjected has been studied. However, the temperature in the pile foundation can be affected by the compressed air if sufficient cooling is not provided. The temperature change can generate thermal stresses and affect the structural safety of the pile foundation. As a first step to investigate this thermal effect, this paper studies temperature distributions inside the concrete section for the pile foundation through non-steady state heat transfer analyses. Several parameters were considered in the study, including thermal conductivities of the concrete, specific heat capacities of the concrete, and dimensions of the pile foundation. It has been found that the temperature distribution along the concrete section varies significantly during a daily energy storage cycle as well as subsequent cycles due to the cumulative effect of residual temperatures at the end of each cycle. The temperature distribution is largely affected by the thermal conductivity of the concrete and the geometry of the pile foundation. The obtained temperature distribution can be used for investigation of the thermal stress inside the foundation and surrounding soil.
Energy storage pile foundations are being developed for storing renewable energy by utilizing compressed air energy storage technology. Previous studies on isolated piles indicate that compressed air can result in pressure and temperature fluctuations in the pile, which can further affect safety of the pile foundation. Meanwhile, the temperature changes and distributions for the pile and surrounding soil also are influenced by adjacent piles in typical group pile constructions. Therefore, dynamic thermal transfer simulations were conducted in this paper to investigate the temperature changes and distributions in the concrete pile and surrounding soil for group pile construction. The main parameter in this study is the spacing of the piles. The analysis results show that the group pile effect significantly increases the temperature up to more than 100 °C depending on the location and changes its distribution in both concrete and soil due to the heat transferred from the adjacent piles. The final stabilized temperature can be as high as 120 °C in the concrete pile and 110 °C in the soil after numerous loading cycles, which is about 4 times higher than typical thermo-active energy pile applications. Thus, it is important to include the group pile effect for design and analysis of the energy storage pile foundation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.