In this paper, we propose a model reduction method for solving multiscale elliptic PDEs with random coefficients in the multiquery setting using an optimization approach. The optimization approach enables us to construct a set of localized multiscale data-driven stochastic basis functions that give optimal approximation property of the solution operator. Our method consists of the offline and online stages. In the offline stage, we construct the localized multiscale data-driven stochastic basis functions by solving an optimization problem. In the online stage, using our basis functions, we can efficiently solve multiscale elliptic PDEs with random coefficients with relatively small computational costs. Therefore, our method is very efficient in solving target problems with many different force functions. The convergence analysis of the proposed method is also presented and has been verified by the numerical simulation.
The semiclassical Schrödinger equation with multiscale and random potentials often appears when studying electron dynamics in heterogeneous quantum systems. As time evolves, the wavefunction develops high-frequency oscillations in both the physical space and the random space, which poses severe challenges for numerical methods. In this paper, we propose a multiscale reduced basis method, where we construct multiscale reduced basis functions using an optimization method and the proper orthogonal decomposition method in the physical space and employ the quasi-Monte Carlo method in the random space. Our method is verified to be efficient: the spatial gridsize is only proportional to the semiclassical parameter and the number of samples in the random space is inversely proportional to the same parameter. Several theoretical aspects of the proposed method, including how to determine the number of samples in the construction of multiscale reduced basis and convergence analysis, are studied with numerical justification. In addition, we investigate the Anderson localization phenomena for Schrödinger equation with correlated random potentials in both 1D and 2D.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.