a b s t r a c tMoxifloxacin (MFX) is a potential oral agent use in the treatment of multidrug-resistance tuberculosis (MDR-TB). Due to variability in pharmacokinetics and in vitro susceptibility of causative bacteria, therapeutic drug monitoring (TDM) of MFX is recommended. Conventional plasma sampling for TDM is facing logistical challenges, especially in limited resource areas, and dried blood spots (DBS) sampling may offer a chance to overcome this problem. The objective of this study was to develop a LC-MS/MS method for determination of MFX in dried blood spots (DBS) that is applicable for TDM. The influence of paper type, the hematocrit (Hct) and the blood volume per spot (V b ) on the estimated blood volume in a disc (V est ) was investigated. The extracts of 8 mm diameter discs punched out from DBS were analyzed using liquid chromatography tandem mass spectrometry (LC-MS/MS) with cyanoimipramin as internal standard. The method was validated with respect to selectivity, linearity, accuracy, precision, sensitivity, recovery and stability. The effect of Hct and V b on LC-MS/MS analytical result was also investigated. The relationship between MFX concentrations in venous and finger prick DBS and those in plasma was clinically explored. V est was highly influenced by Hct while the effect of V b appeared to be different among paper types. Calibration curves were linear in the range of 0.05-6.00 mg/L with inter-day and intra-day precisions and biases of less than 11.1%. The recovery was 84.5, 85.1 and 92.6% in response to blood concentration of 0.15, 2.50 and 5.00 mg/L, respectively. A matrix effect of less than 11.9% was observed. MFX in DBS was stable for at least 4 weeks at room condition (temperature of 25 • C and humidity of 50%). A large range of Hct value produced a significant analytical bias and it can be corrected with resulting DBS size. A good correlation between DBS and plasma concentrations was observed and comparable results between venous DBS and finger prick DBS was attained. This fully validated method is suitable for determination of MFX in dried blood spot and applicable for TDM.
Bedaquiline, a new antituberculosis drug, has already been used in >50 countries. The emergence of bedaquiline resistance is alarming, as it may result in the rapid loss of this new drug. This article aims to review currently identified mechanisms of resistance and the emergence of bedaquiline resistance, and discuss strategies to delay the resistance acquisition. In vitro and clinical studies as well as reports from compassionate use have identified the threat of bedaquiline resistance and cross-resistance with clofazimine, emphasizing the crucial need for the systematic surveillance of resistance. Currently known mechanisms of resistance include mutations within the atpE, Rv0678, and pepQ genes. The development of standardized drug susceptibility testing (DST) for bedaquiline is urgently needed. Understanding any target and non-target-based mechanisms is essential to minimize resistance development and treatment failure and help to develop appropriate DST for bedaquiline and genetic-based resistance screening.
dLinezolid is a promising antimicrobial agent for the treatment of multidrug-resistant tuberculosis (MDR-TB), but its use is limited by toxicity. Therapeutic drug monitoring (TDM) may help to minimize toxicity while adequate drug exposure is maintained. Conventional plasma sampling and monitoring might be hindered in many parts of the world by logistical problems that may be solved by dried blood spot (DBS) sampling. The aim of this study was to develop and validate a novel method for TDM of linezolid in MDR-TB patients using DBS sampling. Plasma, venous DBS, and capillary DBS specimens were obtained simultaneously from eight patients receiving linezolid. A DBS sampling method was developed and clinically validated by comparing DBS with plasma results using Passing-Bablok regression and Bland-Altman analysis. This study showed that DBS analysis was reproducible and robust. Accuracy and between-and within-day precision values from three validations presented as bias and coefficient of variation (CV) were less than 17.2% for the lower limit of quantification and less than 7.8% for other levels. The method showed a high recovery of approximately 95% and a low matrix effect of less than 8.7%. DBS specimens were stable at 37°C for 2 months and at 50°C for 1 week. The ratio of the concentration of linezolid in DBS samples to that in plasma was 1.2 (95% confidence interval [CI], 1.12 to 1.27). Linezolid exposure calculated from concentrations DBS samples and plasma showed good agreement. In conclusion, DBS analysis of linezolid is a promising tool to optimize linezolid treatment in MDR-TB patients. An easy sampling procedure and high sample stability may facilitate TDM, even in underdeveloped countries with limited resources and where conventional plasma sampling is not feasible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.