Collagen plays an extremely important role in carrying forces and maintaining the shape of the cornea. In keratoconus, the cornea shape can become distorted to the extent that normal vision is impossible, and the amount crosslinking between collagen fibrils are generally lower than in healthy eyes. In contrast, riboflavin-induced crosslinks can strengthen and stiffen the cornea. This article examined quantitatively how the extent of crosslinking in collagen fibrils influences the overall mechanical behavior of corneal tissue. Three models for the stress–strain behavior of the fibrils were examined, which is a function of the crosslink density within the fibrils. These models were then embedded in a matrix model, and tensile tests of cornea strips were examined using a finite element program. Results were compared with experiments from the literature for both normal and crosslinked corneas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.