We studied the free fluid-fluid interface in a phase-separated colloid-polymer dispersion with laser scanning confocal microscopy and directly observed thermally induced capillary waves at the interface in real space. Experimental results for static and dynamic correlation functions validate the capillary wave model down to almost the particle level. The ultralow interfacial tension, the capillary length, and the capillary time are found to be in agreement with independent measurements. Furthermore, we show that capillary waves induce the spontaneous breakup of thin liquid films and thus are of key importance in the process of droplet coalescence.
We study the melting of quasi-two-dimensional colloidal hard spheres by considering a tilted monolayer of particles in sedimentation-diffusion equilibrium. In particular, we measure the equation of state from the density profiles and use time-dependent and height-resolved correlation functions to identify the liquid, hexatic, and crystal phases. We find that the liquid-hexatic transition is first order and that the hexatic-crystal transition is continuous. Furthermore, we directly measure the width of the liquid-hexatic coexistence gap from the fluctuations of the corresponding interface, and thereby experimentally establish the full phase behavior of hard disks.
The opportunistic pathogenPseudomonas aeruginosais a major cause of antibiotic-tolerant infections in humans.P. aeruginosaevades antibiotics in bacterial biofilms by up-regulating expression of a symbiotic filamentous inoviral prophage, Pf4. We investigated the mechanism of phage-mediated antibiotic tolerance using biochemical reconstitution combined with structural biology and high-resolution cellular imaging. We resolved electron cryomicroscopy atomic structures of Pf4 with and without its linear single-stranded DNA genome, and studied Pf4 assembly into liquid crystalline droplets using optical microscopy and electron cryotomography. By biochemically replicating conditions necessary for antibiotic protection, we found that phage liquid crystalline droplets form phase-separated occlusive compartments around rod-shaped bacteria leading to increased bacterial survival. Encapsulation by these compartments was observed even when inanimate colloidal rods were used to mimic rod-shaped bacteria, suggesting that shape and size complementarity profoundly influences the process. Filamentous inoviruses are pervasive across prokaryotes, and in particular, several Gram-negative bacterial pathogens includingNeisseria meningitidis,Vibrio cholerae,andSalmonella entericaharbor these prophages. We propose that biophysical occlusion mediated by secreted filamentous molecules such as Pf4 may be a general strategy of bacterial survival in harsh environments.
We report measurements on gas–liquid phase-separating colloid–polymer
mixtures. A horizontally placed optical microscope with long-working-distance
objectives enables us to see effects of gravity on phase separation kinetics and
hence see the complete phase separation from beginning to end. Furthermore,
the static profile near a single wall is analysed giving surface tensions in
good agreement with scaling predictions as well as results from another
experimental technique. The contact angle remains, however, intangible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.