OBJECTIVE: This study aimed to investigate which characteristics of athlete, wheelchair and athlete-wheelchair interface are the best predictors of wheelchair basketball mobility performance. DESIGN: Sixty experienced wheelchair basketball players performed a wheelchair mobility performance test to assess their mobility performance. To determine which variables were the best predictors of mobility performance, forward stepwise linear regression analyses were performed on a set of 33 characteristics, including ten athlete, nineteen wheelchair and four athlete-wheelchair interface characteristics. RESULTS: Eight of the characteristics turned out to be significant predictors of wheelchair basketball mobility performance. Classification, experience, maximal isometric force, wheel axis height and hand rim diameter -which both interchangeable with each other and wheel diameter -camber angle, and the vertical distance between shoulder and rear wheel axis -which was interchangeable with seat height -were positively associated with mobility performance. The vertical distance between the front seat and the footrest was negatively associated with mobility performance. CONCLUSION:With this insight, coaches and biomechanical specialists are provided with statistical findings to determine which characteristics they could focus on best to improve mobility performance. Six out of eight predictors are modifiable and can be optimized to improve mobility performance. These adjustments could be carried out both in training (maximal isometric force) and in wheelchair configurations (e.g. camber angle).
Objectives Home-based physiotherapy interventions to improve post-stroke mobility are successful in high-income countries. These programs require less resources compared to center-based programs. However, feasibility of such an intervention in a low and middle-income setting remains unknown. Therefore, the SunRISe (Stroke Rehabilitation In Suriname) study aimed to assess feasibility and preliminary effectiveness of a home-based semi-supervised physiotherapy intervention to promote post-stroke mobility in a low resource setting. Design Prospective randomized controlled trial. Methods Chronic stroke patients were recruited and randomized into either an intervention group (IG (N = 20)) or a control group (CG (N = 10)). The IG received a 3-days-a-week home-based physiotherapy program that was supervised in the first 4 weeks and tele-supervised during the second 4 weeks. The physiotherapy program consisted of walking as well as functional and mobilization exercises. The CG received usual care. Feasibility outcome measures included adherence, patient satisfaction and safety. Efficacy measures included functional exercise tolerance (six-minute walking test (6MWT), functional balance (Berg Balance Score (BBS), upper extremity (UE) function (Disabilities of the Arm, Shoulder and Hand (DASH) Questionnaire), and UE strength ((non-)paretic handgrip (HG) strength). Two-way analysis of variance was used for data analysis. Results Thirty participants (61.8 ± 9.2 years old, 13 men) were enrolled in the study. The intervention was completed by 14 participants (70%). Adherence was affected by rainy season associated infrastructural problems (n = 2), the medical status of participants (n = 3) and insufficient motivation to continue the program without direct supervision (n = 1). No adverse events were noted and participants were satisfied with the program. Functional exercise tolerance (57.2 ± 67.3m, p = 0.02) and UE function (-9.8 ± 15.2, p = 0.04) improved in the IG compared to no change in the CG. HG strength was unaltered and a ceiling effect occurred for BBS. Conclusion Our home-based semi-supervised physiotherapy intervention seems safe, associated with moderate to high levels of engagement and patient satisfaction and results in functional improvements.
In wheelchair sports, the use of Inertial Measurement Units (IMUs) has proven to be one of the most accessible ways for ambulatory measurement of wheelchair kinematics. A three-IMU configuration, with one IMU attached to the wheelchair frame and two IMUs on each wheel axle, has previously shown accurate results and is considered optimal for accuracy. Configurations with fewer sensors reduce costs and could enhance usability, but may be less accurate. The aim of this study was to quantify the decline in accuracy for measuring wheelchair kinematics with a stepwise sensor reduction. Ten differently skilled participants performed a series of wheelchair sport specific tests while their performance was simultaneously measured with IMUs and an optical motion capture system which served as reference. Subsequently, both a one-IMU and a two-IMU configuration were validated and the accuracy of the two approaches was compared for linear and angular wheelchair velocity.Results revealed that the one-IMU approach show a mean absolute error (MAE) of 0.10 m/s for absolute linear velocity and a MAE of 8.1 • /s for wheelchair angular velocity when compared with the reference system. The two-IMU approach showed similar differences for absolute linear wheelchair velocity (MAE 0.10 m/s), and smaller differences for angular velocity (MAE 3.0 • /s). Overall, a lower number of IMUs used in the configuration resulted in a lower accuracy of wheelchair kinematics. Based on the results of this study, choices regarding the number of IMUs can be made depending on the aim, required accuracy and resources available.
Background Handrim wheelchair propulsion is often assessed in the laboratory on treadmills (TM) or ergometers (WE), under the assumption that they relate to regular overground (OG) propulsion. However, little is known about the agreement of data obtained from TM, WE, and OG propulsion under standardized conditions. The current study aimed to standardize velocity and power output among these three modalities to consequently compare obtained physiological and biomechanical outcome parameters. Methods Seventeen able-bodied participants performed two submaximal practice sessions before taking part in a measurement session consisting of 3 × 4 min of submaximal wheelchair propulsion in each of the different modalities. Power output and speed for TM and WE propulsion were matched with OG propulsion, making them (mechanically) as equal as possible. Physiological data and propulsion kinetics were recorded with a spirometer and a 3D measurement wheel, respectively. Results Agreement among conditions was moderate to good for most outcome variables. However, heart rate was significantly higher in OG propulsion than in the TM condition. Push time and contact angle were smaller and fraction of effective force was higher on the WE when compared to OG/TM propulsion. Participants used a larger cycle time and more negative work per cycle in the OG condition. A continuous analysis using statistical parametric mapping showed a lower torque profile in the start of the push phase for TM propulsion versus OG/WE propulsion. Total force was higher during the start of the push phase for the OG conditions when compared to TM/WE propulsion. Conclusions Physiological and biomechanical outcomes in general are similar, but possible differences between modalities exist, even after controlling for power output using conventional techniques. Further efforts towards increasing the ecological validity of lab-based equipment is advised and the possible impact of these differences -if at all- in (clinical) practice should be evaluated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.