Biocatalysis, one of the oldest technologies, is becoming a favorable alternative to chemical processes and a vital part of green technology. It is an important revenue generating industry due to a global market projected at $7 billion in 2013 with a growth of 6.7% for enzymes alone. Some microbes are important sources of enzymes and are preferred over sources of plant and animal origin. As a result, more than 50% of the industrial enzymes are obtained from bacteria. The constant search for novel enzymes with robust characteristics has led to improvisations in the industrial processes, which is the key for profit growth. Actinomycetes constitute a significant component of the microbial population in most soils and can produce extracellular enzymes which can decompose various materials. Their enzymes are more attractive than enzymes from other sources because of their high stability and unusual substrate specificity. Actinomycetes found in extreme habitats produce novel enzymes with huge commercial potential. This review attempts to highlight the global importance of enzymes and extends to signify actinomycetes as promising harbingers of green technology.
Sapphirine-bearing granulite from Usilampatti in the Madurai block of southern India preserves a variety of mineral textures and reactions that help in reconstructing a three-stage metamorphic evolution. Corroded biotite, sillimanite and quartz inclusions within garnet represent relics from the prograde history. Peak metamorphic conditions were attained with the development of sapphirine + quartz in textural equilibrium (Stage 1). This was followed by nearly isothermal decompression, leading to the formation of sapphirine + cordierite at Stage 2. Subsequent retrograde hydration (Stage 3) is only locally evident. Using the Perple_X software and the model system NCKFMASH, the peak P-T conditions were estimated from core compositions, and the retrograde evolution was deduced from rim or symplectite compositions of different minerals as computed by isopleths of X Mg garnet, X Ca garnet, X Mg orthopyroxene, X Mg sapphirine and X Mg biotite. The P-T conditions for Stage 1 thus obtained, and supported by thermodynamic modelling using the winTWQ programme, is approximately 9 kbar and 940°C. Stage 2 conditions were constrained as 6.7 kbar and 900°C. Dating of zircon and monazite in the sapphirine-bearing granulite and associated gneisses by the U-Pb method using LA-ICP-MS indicates metamorphic overprint of zircon (lower intercept ages of discordant data arrays) at 546 ± 8 and 547 ± 11 Ma and metamorphic growth of monazite between 542 ± 3 and 551 ± 2 Ma. Upper intercept ages for zircon point to zircon growth at approximately 2514 ± 66 Ma. Although it remains unclear whether the metamorphic age data refer to Stage 1 or Stage 2 or, most likely, a continuum between both, they clearly document a late Ediacaran age for ultra-high temperature (UHT) metamorphism in the area, which, based on the obtained P-T path, was most likely the result of crustal thickening followed by uplift and erosion. Thus, it is concluded that the sapphirine-bearing granulites formed in response to Pan-African orogeny that led to the collision of the western and eastern Madurai domains, whereas initial zircon growth probably took place during late Neoarchaean arc magmatism that formed much of the western domain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.