Abstract. This paper shows that a $390 mass-market quad-core 2.4GHz Intel Westmere (Xeon E5620) CPU can create 109000 signatures per second and verify 71000 signatures per second on an elliptic curve at a 2 128 security level. Public keys are 32 bytes, and signatures are 64 bytes. These performance figures include strong defenses against software sidechannel attacks: there is no data flow from secret keys to array indices, and there is no data flow from secret keys to branch conditions.
Abstract. Several ideal-lattice-based cryptosystems have been broken by recent attacks that exploit special structures of the rings used in those cryptosystems. The same structures are also used in the leading proposals for post-quantum lattice-based cryptography, including the classic NTRU cryptosystem and typical Ring-LWE-based cryptosystems. This paper (1) proposes NTRU Prime, which tweaks NTRU to use rings without these structures; (2) proposes Streamlined NTRU Prime, a public-key cryptosystem optimized from an implementation perspective, subject to the standard design goal of IND-CCA2 security; (3) finds high-security post-quantum parameters for Streamlined NTRU Prime; and (4) optimizes a constant-time implementation of those parameters. The resulting sizes and speeds show that reducing the attack surface has very low cost.
Abstract. This paper introduces high-security constant-time variable-base-point Diffie-Hellman software using just 274593 Cortex-A8 cycles, 91460 Sandy Bridge cycles, 90896 Ivy Bridge cycles, or 72220 Haswell cycles. The only higher speed appearing in the literature for any of these platforms is a claim of 60000 Haswell cycles for unpublished software performing arithmetic on a binary elliptic curve.The new speeds rely on a synergy between (1) state-of-the-art formulas for genus-2 hyperelliptic curves and (2) a modern trend towards vectorization in CPUs. The paper introduces several new techniques for efficient vectorization of Kummer-surface computations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.