The possibility of using thermoplastic polymers in photopolymer compositions for SLA and DLP is discussed in this article. The diffusion and mutual solubility of uncured systems based on tert-butyl acrylate (tBA) and ethylene-vinyl acetate copolymers (EVA) or low-density polyethylene (LDPE) were studied. The solubility and diffusion of tBA with EVA containing 7, 20, and 40 wt.% vinyl acetate (VA) and with LDPE in the temperature range 20–75 °C were studied by optical micro-interferometry method. Phase diagrams of LDPE–tBA, EVA-7–tBA, and EVA-20–tBA systems were obtained. It is shown that the compositions are characterized by the phase-state diagrams of amorphous separation with the upper critical solution temperature (UCST). The concentration dependences of the interdiffusion coefficients as well as dependences of the self-diffusion coefficients on VA content and on temperature were plotted. The activation energy of self-diffusion of EVA and LDPE was calculated. It was shown that the most promising tBA modifier is EVA-40, which is completely soluble at all studied temperature ranges. The obtained data on the mixing of the initial components is valuable for further studies of the processes of structure formation during photocuring of compositions, regulation of the phase structure and, as a consequence, the performance characteristics of the 3D printable materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.