Plants store large amounts of non-structural carbohydrates (NSC). While multiple functions of NSC have long been recognized, the interpretation of NSC seasonal dynamics is often based on the idea that stored NSC is a reservoir of carbon that fluctuates depending on the balance between supply via photosynthesis and demand for growth and respiration (the source-sink dynamics concept). Consequently, relatively high NSC concentrations in some plants have been interpreted to reflect excess supply relative to demand. An alternative view, however, is that NSC accumulation reflects the relatively high NSC levels required for plant survival; an important issue that remains highly controversial. Here, we assembled a new global database to examine broad patterns of seasonal NSC variation across organs (leaves, stems, and belowground), plant functional types (coniferous, drought-deciduous angiosperms, winter deciduous angiosperms, evergreen angiosperms, and herbaceous) and biomes (boreal, temperate, Mediterranean, and tropical). We compiled data from 121 studies, including seasonal measurements for 177 species under natural conditions. Our results showed that, on average, NSC account for ~10% of dry plant biomass and are highest in leaves and lowest in stems, whereas belowground organs show intermediate concentrations. Total NSC, starch, and soluble sugars (SS) varied seasonally, with a strong depletion of starch during the growing season and a general increase during winter months, particularly in boreal and temperate biomes. Across functional types, NSC concentrations were highest and most variable in herbaceous species and in conifer needles. Conifers showed the lowest stem and belowground NSC concentrations. Minimum NSC values were relatively high (46% of seasonal maximums on average for total NSC) and, in contrast to average values, were similar among biomes and functional types. Overall, although starch depletion was relatively common, seasonal depletion of total NSC or SS was rare. These results are consistent with a dual view of NSC function: whereas starch acts mostly as a reservoir for future use, soluble sugars perform immediate functions (e.g., osmoregulation) and are kept above some critical threshold. If confirmed, this dual function of NSC will have important implications for the way we understand and model plant carbon allocation and survival under stress.
Volatile compounds are usually associated with an appearance/presence in the atmosphere. Recent advances, however, indicated that the soil is a huge reservoir and source of biogenic volatile organic compounds (bVOCs), which are formed from decomposing litter and dead organic material or are synthesized by underground living organism or organs and tissues of plants. This review summarizes the scarce available data on the exchange of VOCs between soil and atmosphere and the features of the soil and particle structure allowing diffusion of volatiles in the soil, which is the prerequisite for biological VOC-based interactions. In fact, soil may function either as a sink or as a source of bVOCs. Soil VOC emissions to the atmosphere are often 1-2 (0-3) orders of magnitude lower than those from aboveground vegetation. Microorganisms and the plant root system are the major sources for bVOCs. The current methodology to detect belowground volatiles is described as well as the metabolic capabilities resulting in the wealth of microbial and root VOC emissions. Furthermore, VOC profiles are discussed as non-destructive fingerprints for the detection of organisms. In the last chapter, belowground volatile-based bi-and multitrophic interactions between microorganisms, plants and invertebrates in the soil are discussed.
Soil phosphatase levels strongly control the biotic pathways of phosphorus (P), an essential element for life, which is often limiting in terrestrial ecosystems. We investigated the influence of climatic and soil traits on phosphatase activity in terrestrial systems using metadata analysis from published studies. This is the first analysis of global measurements of phosphatase in natural soils. Our results suggest that organic P (Porg), rather than available P, is the most important P fraction in predicting phosphatase activity. Structural equation modeling using soil total nitrogen (TN), mean annual precipitation, mean annual temperature, thermal amplitude and total soil carbon as most available predictor variables explained up to 50% of the spatial variance in phosphatase activity. In this analysis, Porg could not be tested and among the rest of available variables, TN was the most important factor explaining the observed spatial gradients in phosphatase activity. On the other hand, phosphatase activity was also found to be associated with climatic conditions and soil type across different biomes worldwide. The close association among different predictors like Porg, TN and precipitation suggest that P recycling is driven by a broad scale pattern of ecosystem productivity capacity.
The exchanges of volatile organic compounds (VOCs) between soils and the atmosphere are poorly known. We investigated VOC exchange rates and how they were inXuenced by soil moisture, temperature and the presence of plant roots in a Mediterranean forest soil. We measured VOC exchange rates along a soil moisture gradient (5%-12.5%-20%-27.5% v/v) and a temperature gradient (10°C-15°C-25°C-35°C) using PTR-MS. Monoterpenes were identiWed with GC-MS. Soils were a sink rather than a source of VOCs in both soil moisture and temperature treatments (¡2.16 § 0.35 nmol m ¡2 s ¡1 and ¡4.90 § 1.24 nmol m ¡2 s ¡1 respectively). Most compounds observed were oxygenated VOCs like alcohols, aldehydes and ketones and aromatic hydrocarbons. Other volatiles such as acetic acid and ethyl acetate were also observed. All those compounds had very low exchange rates (maximum uptake rates from ¡0.8 nmol m ¡2 s ¡1 to ¡0.6 nmol m ¡2 s ¡1 for methanol and acetic acid). Monoterpene exchange ranged only from ¡0.004 nmol m ¡2 s ¡1 to 0.004 nmol m ¡2 s ¡1 and limonene and -pinene were the most abundant compounds. Increasing soil moisture resulted in higher soil sink activity possibly due to increases in microbial VOCs uptake activity. No general pattern of response was found in the temperature gradient for total VOCs. Roots decreased the emission of many compounds under increasing soil moisture and under increasing soil temperature. While our results showed that emission of some soil VOCs might be enhanced by the increases in soil temperature and that the uptake of most soil VOCs uptake might be reduced by the decreases of soil water availability, the low exchange rates measured indicated that soil-atmosphere VOC exchange in this system are unlikely to play an important role in atmospheric chemistry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.