This article proposes a neural-network approach to predict and simulate human mortality rates. This semi-parametric model is capable to detect and duplicate non-linearities observed in the evolution of log-forces of mortality. The method proceeds in two steps. During the first stage, a neural-network-based generalization of the principal component analysis summarizes the information carried by the surface of log-mortality rates in a small number of latent factors. In the second step, these latent factors are forecast with an econometric model. The term structure of log-forces of mortality is next reconstructed by an inverse transformation. The neural analyzer is adjusted to French, UK and US mortality rates, over the period 1946–2000 and validated with data from 2001 to 2014. Numerical experiments reveal that the neural approach has an excellent predictive power, compared to the Lee–Carter model with and without cohort effects.
This study proposes a new Markov switching process with clustering eects. In this approach, a hidden Markov chain with a nite number of states modulates the parameters of a self-excited jump process combined to a geometric Brownian motion. Each regime corresponds to a particular economic cycle determining the expected return, the diusion coecient and the long-run frequency of clustered jumps. We study rst the theoretical properties of this process and we propose a sequential Monte-Carlo method to lter the hidden state variables. We next develop a Markov Chain Monte-Carlo procedure to t the model to the S&P 500. Finally, we analyse the impact of such a jump clustering on implied volatilities of European options.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.