A new impulsive noise removal filter, adaptive dynamically weighted median filter (ADWMF), is proposed. A popular method for removing impulsive noise is a median filter whereas the weighted median filter and center weighted median filter were also investigated. ADWMF is based on weighted median filter. In ADWMF, instead of fixed weights, weightages of the filter are dynamically assigned with the results of noise detection. A simple and efficient noise detection method is also used to detect noise candidates and dynamically assign zero or small weights to the noise candidates in the window. This paper proposes an adaptive method which increases the window size according to the amounts of impulsive noise. Simulation results show that the AMWMF works better for both images with low and high density of impulsive noise than existing methods work.
This paper introduces an image interpolation method that provides performance superior to that of the state-of-the-art algorithms. The simple linear method, if used for interpolation, provides interpolation at the cost of blurring, jagging, and other artifacts; however, applying complex methods provides better interpolation results, but sometimes they fail to preserve some specific edge patterns or results in oversmoothing of the edges due to postprocessing of the initial interpolation process. The proposed method uses a new gradient-based approach that makes an intelligent decision based on the edge direction using the edge map and gradient map of an image and interpolates unknown pixels in the predicted direction using known intensity pixels. The input image is subjected to the efficient hysteresis thresholding-based edge map calculation, followed by interpolation of low-resolution edge map to obtain a high-resolution edge map. Edge map interpolation is followed by classification of unknown pixels into obvious edges, uniform regions, and transitional edges using the decision support system. Coefficient-based interpolation that involves gradient coefficient and distance coefficient is applied to obvious edge pixels in the high-resolution image, whereas transitional edges in the neighborhood of an obvious edge are interpolated in the same direction to provide uniform interpolation. Simple line averaging is applied to pixels that are not detected as an edge to decrease the complexity of the proposed method. Applying line averaging to smooth pixels helps to control the complexity of the algorithm, whereas applying gradient-based interpolation preserves edges and hence results in better performance at reasonable complexity.
Fingerprint registration and verification is an active area of research in the field of image processing. Usually, fingerprints are obtained from sensors; however, there is recent interest in using images of fingers obtained from digital cameras instead of scanners. An unaddressed issue in the processing of fingerprints extracted from digital images is the angle of the finger during image capture. To match a fingerprint with 100% accuracy, the angles of the matching features should be similar. This paper proposes a rotation and scale-invariant decision-making method for the intelligent registration and recognition of fingerprints. A digital image of a finger is taken as the input and compared with a reference image for derotation. Derotation is performed by applying binary segmentation on both images, followed by the application of speeded up robust feature (SURF) extraction and then feature matching. Potential inliers are extracted from matched features by applying the M-estimator. Matched inlier points are used to form a homography matrix, the difference in the rotation angles of the finger in both the input and reference images is calculated, and finally, derotation is performed. Input fingerprint features are extracted and compared or stored based on the decision support system required for the situation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.