Genetic mutation and pharmacological inhibition of Bruton's tyrosine kinase (Btk) both have been shown to prevent the development of collagen-induced arthritis (CIA) in mice, providing a rationale for the development of Btk inhibitors for treating rheumatoid arthritis (RA). In the present study, we characterized a novel Btk inhibitor, 6-cyclopro-, in vitro and in rodent models of immune hypersensitivity and arthritis. We demonstrated that RN486 not only potently and selectively inhibited the Btk enzyme, but also displayed functional activities in human cell-based assays in multiple cell types, blocking Fc receptor cross-linking-induced degranulation in mast cells (IC 50 ϭ 2.9 nM), Fc␥ receptor engagement-mediated tumor necrosis factor ␣ production in monocytes (IC 50 ϭ 7.0 nM), and B cell antigen receptor-induced expression of an activation marker, CD69, in B cells in whole blood (IC 50 ϭ 21.0 nM). RN486 displayed similar functional activities in rodent models, effectively preventing type I and type III hypersensitivity responses. More importantly, RN486 produced robust anti-inflammatory and boneprotective effects in mouse CIA and rat adjuvant-induced arthritis (AIA) models. In the AIA model, RN486 inhibited both joint and systemic inflammation either alone or in combination with methotrexate, reducing both paw swelling and inflammatory markers in the blood. Together, our findings not only demonstrate that Btk plays an essential and conserved role in regulating immunoreceptor-mediated immune responses in both humans and rodents, but also provide evidence and mechanistic insights to support the development of selective Btk inhibitors as small-molecule disease-modifying drugs for RA and potentially other autoimmune diseases.
microRNA expression during the transition from right ventricular hypertrophy to failure. Physiol Genomics 44: 562-575, 2012. First published March 27, 2012 doi:10.1152/physiolgenomics.00163.2011 are small, noncoding RNAs that are emerging as crucial regulators of cardiac remodeling in left ventricular hypertrophy (LVH) and failure (LVF). However, there are no data on their role in right ventricular hypertrophy (RVH) and failure (RVF). This is a critical question given that the RV is uniquely at risk in patients with congenital right-sided obstructive lesions and in those with systemic RVs. We have developed a murine model of RVH and RVF using pulmonary artery constriction (PAC). miR microarray analysis of RV from PAC vs. control demonstrates altered miR expression with gene targets associated with cardiomyocyte survival and growth during hypertrophy (miR 199a-3p) and reactivation of the fetal gene program during heart failure (miR-208b). The transition from hypertrophy to heart failure is characterized by apoptosis and fibrosis (miRs-34, 21, 1). Most are similar to LVH/LVF. However, there are several key differences between RV and LV: four miRs (34a, 28, 148a, and 93) were upregulated in RVH/RVF that are downregulated or unchanged in LVH/LVF. Furthermore, there is a corresponding downregulation of their putative target genes involving cell survival, proliferation, metabolism, extracellular matrix turnover, and impaired proteosomal function. The current study demonstrates, for the first time, alterations in miRs during the process of RV remodeling and the gene regulatory pathways leading to RVH and RVF. Many of these alterations are similar to those in the afterload-stressed LV. miRs differentially regulated between the RV and LV may contribute to the RVs increased susceptibility to heart failure. heart failure; right ventricle CARDIAC REMODELING IN RESPONSE to stress results from activation and repression of genes encoding proteins that regulate cardiac contractility and structure. As novel mechanisms of remodeling are uncovered to understand the basic mechanisms of disease, an additional layer of regulation mediated by stress-responsive microRNAs (miRs) has emerged. miRs are small, noncoding RNAs of 18 -25 nucleotides that regulate gene expression by degradation or translational suppression of mRNA. miRs have retained sequence conservation across species, indicating a strong evolutionary role in fundamental biologic processes. Since the discovery of the first miR in 1993, their role in cell differentiation, proliferation, apoptosis, and stress responses has been elucidated. Their role in cardiovascular development, left ventricular hypertrophy (LVH), and heart failure is only now being understood. (8, 13).Van Rooij et al. (56) elucidated the miR expression profile in LVH in a model of thoracic aortic constriction. Many of the induced and repressed miRs were regulated in the same direction in fetal, hypertrophic, and failing human hearts, consistent with the known reactivation of the fetal gene program with st...
These findings demonstrate the requirement for physiological mitochondrial fragmentation to meet the energetic demands of exercise, as well as providing additional support for the evolving conceptual framework, where mitochondrial fission and fragmentation play a role in the balance between mitochondrial maintenance of normal physiology and response to disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.