A database design methodology is defined for the design of large relational databases. First, the data requirements are conceptualized using an extended entity-relationship model, with the extensions being additional semantics such as ternary relationships, optional relationships, and the generalization abstraction. The extended entityrelationship model is then decomposed according to a set of basic entity-relationship constructs, and these are transformed into candidate relations. A set of basic transformations has been developed for the three types of relations: entity relations, extended entity relations, and relationship relations. Candidate relations are further analyzed and modified to attain the highest degree of normalization desired. The methodology produces database designs that are not only accurate representations of reality, but flexible enough to accommodate future processing requirements. It also reduces the number of data dependencies that must be analyzed, using the extended ER model conceptualization, and maintains data integrity through normalization. This approach can be implemented manually or in a simple software package as long as a "good" solution is acceptable and absolute optimality is not required.
In this study, we propose a simple and novel data structure using hyper-links, H-struct, and a new mining algorithm, H-mine, which takes advantage of this data structure and dynamically adjusts links in the mining process. A distinct feature of this method is that it has a very limited and precisely predictable main memory cost and runs very quickly in memory-based settings. Moreover, it can be scaled up to very large databases using database partitioning. When the data set becomes dense, (conditional) FP-trees can be constructed dynamically as part of the mining process. Our study shows that H-mine has an excellent performance for various kinds of data, outperforms currently available algorithms in different settings, and is highly scalable to mining large databases. This study also proposes a new data mining methodology, space-preserving mining, which may have a major impact on the future development of efficient and scalable data mining methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.