Streptococcal pyrogenic exotoxin B (SpeB), a conserved cysteine protease expressed by virtually all Streptococcus pyogenes strains, has recently been shown to be an important virulence factor (S. Lukomski, S. Sreevatsan, C. Amberg, W. Reichardt, M. Woischnik, A. Podbielski, and J. M. Musser, J. Clin. Invest. 99:2574–2580, 1997). Genetic inactivation of SpeB significantly decreased the lethality of a serotype M49 strain for mice and abolished the lethality of a serotype M3 strain after intraperitoneal (i.p.) injection. In the present study, a wild-type M3 isolate and an M3 speB mutant derivative were used to investigate the mechanism responsible for altered virulence. Following i.p. injection, the mutant and wild-type strains induced virtually identical cellular inflammatory responses, characterized largely by an influx of polymorphonuclear leukocytes (PMNs). In addition, the mutant and wild-type strains rapidly entered the blood and were recovered from all organs examined. However, significantly fewer (P < 0.05) CFUs of the isogenic mutant derivative than of the wild-type parent strain were recovered from blood and organs. PMNs effectively cleared the M3 speB mutant from the peritoneum by 22 h, thereby sparing the host. In contrast, the wild-type M3 strain continued to replicate intraperitoneally and had the ability to kill phagocytes. This process allowed the wild-type strain to continuously disseminate, resulting in host death. Our results indicate that genetic inactivation of the cysteine protease decreased the resistance of the mutant to phagocytosis and impaired its subsequent dissemination to organs. These results provide insight into the detrimental effect of SpeB inactivation on virulence.
An alternative model to nonhuman primates to study measles virus (MV) pathogenesis, to evaluate potential MV vaccines, or to screen for potential antivirals effective against this virus is highly desirable. The laboratory-adapted Edmonston strain of MV has been reported to replicate in the lungs of hispid cotton rats following intranasal inoculation, immunosuppress infected animals, and disseminate widely from the lungs, making these animals a candidate model. However, clinical MV strains have generally not been found to grow in these animals, limiting the utility and acceptance of this model. In the present studies we demonstrate reproducible replication of several clinical MV strains in hispid cotton rats. As with the Edmonston strain, leukocytes appear to be the primary target cells of these viruses following intranasal inoculation, and extrapulmonary dissemination is common. It is also demonstrated that prior MV infection or immunization of test animals with MV vaccine prevents pulmonary tract infection. These findings should make the MV-cotton rat model more acceptable.
No practical animal models for the testing of chemotherapeutic or biologic agents identified in cell culture assays as being active against measles virus (MV) are currently available. Cotton rats may serve this purpose. To evaluate this possibility, 5-ethynyl-1--D-ribofuranosylimidazole-4-carboxamide (EICAR) and poly(acrylamidomethyl propanesulfonate) (PAMPS), two compounds that have been reported to inhibit MV in vitro, and ribavirin, an established antiviral drug with MV-inhibitory activity, were evaluated for their antiviral activities against MV and respiratory syncytial virus (RSV) in tissue culture and in hispid cotton rats. A single administration of PAMPS markedly inhibited pulmonary RSV or MV replication (>3 log 10 reduction in pulmonary titer compared to that for controls), but only if this compound was administered intranasally at about the time of virus inoculation. Both EICAR and ribavirin exhibited therapeutic activity against RSV and MV in cotton rats when they were administered parenterally. However, both of these compounds were less effective against MV. On the basis of the pulmonary virus titers on day 4 after virus inoculation, the minimal efficacious dose of EICAR against MV (120 mg/kg of body weight/day when delivered intraperitoneally twice daily) appeared to be three times lower against this virus than that of ribavirin delivered at a similar dose (i.e., 360 mg/kg/day). These findings correlated with those obtained in vitro. The data obtained suggest that cotton rats may indeed be useful for the initial evaluation of the activities of antiviral agents against MV.
An alternative model to nonhuman primates to study measles virus (MV) pathogenesis, to evaluate potential MV vaccines, or to screen for potential antivirals effective against this virus is highly desirable. The laboratory-adapted Edmonston strain of MV has been reported to replicate in the lungs of hispid cotton rats following intranasal inoculation, immunosuppress infected animals, and disseminate widely from the lungs, making these animals a candidate model. However, clinical MV strains have generally not been found to grow in these animals, limiting the utility and acceptance of this model. In the present studies we demonstrate reproducible replication of several clinical MV strains in hispid cotton rats. As with the Edmonston strain, leukocytes appear to be the primary target cells of these viruses following intranasal inoculation, and extrapulmonary dissemination is common. It is also demonstrated that prior MV infection or immunization of test animals with MV vaccine prevents pulmonary tract infection. These findings should make the MV-cotton rat model more acceptable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.