Analog spatial differentiation is used to realize edge-based enhancement, which plays an important role in data compression, microscopy, and computer vision applications. Here, a planar chip made from dielectric multilayers is proposed to operate as both first- and second-order spatial differentiator without any need to change the structural parameters. Third- and fourth-order differentiations that have never been realized before, are also experimentally demonstrated with this chip. A theoretical analysis is proposed to explain the experimental results, which furtherly reveals that more differentiations can be achieved. Taking advantages of its differentiation capability, when this chip is incorporated into conventional imaging systems as a substrate, it enhances the edges of features in optical amplitude and phase images, thus expanding the functions of standard microscopes. This planar chip offers the advantages of a thin form factor and a multifunctional wave-based analogue computing ability, which will bring opportunities in optical imaging and computing.
A limitation of standard brightfield microscopy is its low contrast images, especially for thin specimens of weak absorption, and biological species with refractive indices very close in value to that of their surroundings. Here, we demonstrate, using a planar photonic chip with tailored angular transmission as the sample substrate, a standard brightfield microscopy can provide both darkfield and total internal reflection (TIR) microscopy images with one experimental configuration. The image contrast is enhanced without altering the specimens and the microscope configurations. This planar chip consists of several multilayer sections with designed photonic band gaps and a central region with dielectric nanoparticles, which does not require top-down nanofabrication and can be fabricated in a large scale. The photonic chip eliminates the need for a bulky condenser or special objective to realize darkfield or TIR illumination. Thus, it can work as a miniaturized high-contrast-imaging device for the developments of versatile and compact microscopes.
Spectral characterization plays an important role in both scientific research and industrial applications. There is now growing demand for spectrometers that offer advantages such as miniaturized size, high efficiency, and high spectral resolution. In this work, a planar photonic chip containing dielectric multilayers with a photonic band gap that has tailored dispersion relations is proposed for rapid spectral measurement applications by taking advantage of its ability to load low-loss Bloch surface waves (BSWs). When this chip is attached to a dispersive prism, the spectral resolution will not be reduced even if the size of the prism used in the spectrometer is reduced. On the contrary, the resolution can be improved because of the angular dispersion power of the low-loss BSWs, thus promoting the miniaturization of spectrometers. Spectra from various sources, including laser, white light, fluorescent emission, and even Raman scattering light sources, are characterized using the compact planar photonic chips. The spectral resolution achieved can be as high as 0.6 nm.
We report the design and realization of the back focal plane (BFP) imaging for the light emission from a tunnel junction in a low-temperature ultrahigh-vacuum (UHV) scanning tunneling microscope (STM). To achieve the BFP imaging in a UHV environment, a compact “all-in-one” sample holder is designed and fabricated, which allows us to integrate the sample substrate with the photon collection units that include a hemisphere solid immersion lens and an aspherical collecting lens. Such a specially designed holder enables the characterization of light emission both within and beyond the critical angle and also facilitates the optical alignment inside a UHV chamber. To test the performance of the BFP imaging system, we first measure the photoluminescence from dye-doped polystyrene beads on a thin Ag film. A double-ring pattern is observed in the BFP image, arising from two kinds of emission channels: strong surface plasmon coupled emissions around the surface plasmon resonance angle and weak transmitted fluorescence maximized at the critical angle, respectively. Such an observation also helps to determine the emission angle for each image pixel in the BFP image and, more importantly, proves the feasibility of our BFP imaging system. Furthermore, as a proof-of-principle experiment, electrically driven plasmon emissions are used to demonstrate the capability of the constructed BFP imaging system for STM induced electroluminescence measurements. A single-ring pattern is obtained in the BFP image, which reveals the generation and detection of the leakage radiation from the surface plasmon propagating on the Ag surface. Further analyses of the BFP image provide valuable information on the emission angle of the leakage radiation, the orientation of the radiating dipole, and the plasmon wavevector. The UHV–BFP imaging technique demonstrated here opens new routes for future studies on the angular distributed emission and dipole orientation of individual quantum emitters in UHV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.