Fig. 1. Visualizations under natural lighting of four captured 1k resolution SVBRDFs estimated using our deep inverse rendering framework. The leather material (left) is reconstructed from just 2 input photographs captured with a mobile phone camera and flash, while the other materials are recovered from 20 input photographs. In this paper we present a unified deep inverse rendering framework for estimating the spatially-varying appearance properties of a planar exemplar from an arbitrary number of input photographs, ranging from just a single photograph to many photographs. The precision of the estimated appearance scales from plausible when the input photographs fails to capture all the reflectance information, to accurate for large input sets. A key distinguishing feature of our framework is that it directly optimizes for the appearance parameters in a latent embedded space of spatially-varying appearance, such that no handcrafted heuristics are needed to regularize the optimization. This latent embedding is learned through a fully convolutional auto-encoder that has been designed to regularize the optimization. Our framework not only supports an arbitrary number of input photographs, but also at high
We present deferred neural lighting, a novel method for free-viewpoint relighting from unstructured photographs of a scene captured with handheld devices. Our method leverages a scene-dependent neural rendering network for relighting a rough geometric proxy with learnable neural textures. Key to making the rendering network lighting aware are radiance cues: global illumination renderings of a rough proxy geometry of the scene for a small set of basis materials and lit by the target lighting. As such, the light transport through the scene is never explicitely modeled, but resolved at rendering time by a neural rendering network. We demonstrate that the neural textures and neural renderer can be trained end-to-end from unstructured photographs captured with a double hand-held camera setup that concurrently captures the scene while being lit by only one of the cameras' flash lights. In addition, we propose a novel augmentation refinement strategy that exploits the linearity of light transport to extend the relighting capabilities of the neural rendering network to support other lighting types (e.g., environment lighting) beyond the lighting used during acquisition (i.e., flash lighting). We demonstrate our deferred neural lighting solution on a variety of real-world and synthetic scenes exhibiting a wide range of material properties, light transport effects, and geometrical complexity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.