The progression of cancer in the breast involves multiple reciprocal interactions between malignantly transformed epithelia, surrounding untransformed but affected stromal cells, and the extracellular matrix (ECM) that is remodeled during the process. A quantitative understanding of the relative contribution of such interactions to phenotypes associated with cancer cells can be arrived at through the construction of increasingly complex experimental and computational models. Herein, we introduce a multiscale three-dimensional (3D) organo- and pathotypic experimental assay that approximates, to an unprecedented extent, the histopathological complexity of a tumor disseminating into its surrounding stromal milieu via both bulk and solitary motility dynamics. End point and time-lapse microscopic observations of this assay allow us to study the earliest steps of cancer invasion as well as the dynamical interactions between the epithelial and stromal compartments. We then simulate our experimental observations using the modeling environment Compucell3D that is based on the Glazier–Graner–Hogeweg model. The computational model, which comprises adhesion between cancer cells and the matrices, cell proliferation and apoptosis, and matrix remodeling through reaction–diffusion–based morphogen dynamics, is first trained to phenocopy controls run with the experimental model, wherein one or the other matrices have been removed. The trained computational model successfully predicts phenotypes of the experimental counterparts that are subjected to pharmacological treatments (inhibition of N-linked glycosylation and matrix metalloproteinase activity) and scaffold modulation (alteration of collagen density). Further parametric exploration-based simulations suggest that specific permissive regimes of cell–cell and cell–matrix adhesions, operating in the context of a reaction–diffusion–regulated ECM dynamics, promote multiscale invasion of breast cancer cells and determine the extent to which the latter migrate through their surrounding stroma.
Heterogeneity in phenotypes of malignantly transformed cells and aberrant glycan expression on their surface are two prominent hallmarks of cancers that have hitherto not been linked to each other. In this paper, we identify differential levels of a specific glycan linkage: α2,6-linked sialic acids within breast cancer cells in vivo and in culture. Upon sorting out two populations with moderate, and relatively higher, cell surface α2,6-linked sialic acid levels from the triple-negative breast cancer cell line MDA-MB-231, both populations (denoted as medium and high 2,6-Sial cells, respectively) stably retained their levels in early passages. Upon continuous culturing, medium 2,6-Sial cells recapitulated the heterogeneity of the unsorted line whereas high 2,6-Sial cells showed no such tendency. Compared with high 2,6-Sial cells, the medium 2,6-Sial counterparts showed greater adhesion to reconstituted extracellular matrices (ECMs) and invaded faster as single cells. The level of α2,6-linked sialic acids in the two sublines was found to be consistent with the expression of a specific glycosyl transferase, ST6GAL1. Stably knocking down ST6GAL1 in the high 2,6-Sial cells enhanced their invasiveness. When cultured together, medium 2,6-Sial cells differentially migrated to the edge of growing tumoroid-like cocultures, whereas high 2,6-Sial cells formed the central bulk. Multiscale simulations in a Cellular Potts model-based computational environment calibrated to our experimental findings suggest that differential levels of cell–ECM adhesion, likely regulated by α2,6-linked sialic acids, facilitate niches of highly invasive cells to efficiently migrate centrifugally as the invasive front of a malignant breast tumor.
Equal contribution.The progression of cancer in the breast involves multiple reciprocal interactions between malignantly transformed epithelia, surrounding untransformed but affected stromal cells, and the extracellular matrix (ECM) that is remodelled during the process. A quantitative understanding of the relative contribution of such interactions to phenotypes associated with cancer cells can be arrived at through the construction of increasingly complex experimental and computational models. Herein, we introduce a multiscale 3D organo-and patho-typic model that approximates, to an unprecedented extent, the histopathological complexity of a tumor disseminating into its surrounding stromal milieu via both bulk and solitary motility dynamics. End-point and time-lapse microscopic observations of this model allow us to study the earliest steps of cancer invasion as well as the dynamical interactions between the epithelial and stromal compartments. We then construct an agent-based Cellular Potts model that incorporates constituents of the experimental model, as well as places them in similar spatial arrangements. The computational model, which comprises adhesion between cancer cells and the matrices, cell proliferation and apoptosis, and matrix remodeling through reaction-diffusion-based morphogen dynamics, is first trained to phenocopy controls run with the experimental model, wherein one or the other matrices have been removed. The trained computational model successfully predicts phenotypes of the experimental counterparts that are subjected to pharmacological treatments (inhibition of N-linked glycosylation and matrix metalloproteinase activity) and scaffold modulation (alteration of collagen density). Our results suggest that specific permissive regimes of cell-cell and cell-matrix adhesions operating in the context of a reaction-diffusionregulated ECM dynamics, promote multiscale invasion of breast cancer cells and determine the extent to which they migrate through their surrounding stroma. Preparation of cancer cell clusters:Normal/cancer cells were trypsinized using 1:5 diluted 0.25% Trypsin & 0.02% EDTA (HiMedia, TCL007). 30,000 cells per 200 μ L of defined medium (Blaschke et al., 1994) supplemented with 4% rBM (Corning, 354230) were cultured on 3% polyHEMA (Sigma, P3932) coated 96 well plate for 48 hours in a 37 o C humidified incubator with 5% carbon dioxide. 3D invasion assay:rBM-coated clusters were collected into 1.5 mL tubes, centrifuged briefly and supernatant is removed. Acid-extracted rat tail collagen (Gibco, A1048301) was neutralized on ice in the presence of 10X DMEM with 0.1N NaOH such that the final concentration of the collagen is 1 mg/mL. Pellet of clusters was resuspended in 50 μ L of neutralized collagen and seeded in 8-well chambered cover glass (Eppendorf 0030742036) and supplemented with defined medium. 3D cultures were grown in a 37 o C humidified incubator with 5% carbon dioxide. Processing of 3D invasive clusters:3D invasion cultures were washed with phosphate buffered saline pH 7...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.