Hardware designers invest a significant design effort when implementing computationally intensive cryptographic algorithms onto constrained embedded devices to match the computational demands of the algorithms with the stringent area, power and energy budgets of the platforms. When it comes to designs that are employed in potential hostile environments, another challenge arises: the design has to be resistant against attacks based on the physical properties of the implementation, the so-called implementation attacks. This creates an extra design concern for a hardware designer. This paper gives an insight into the field of fault attacks and countermeasures to help the designer to protect the design against this type of implementation attacks. We analyze fault attacks from different aspects and expose the mechanisms they employ to reveal a secret parameter of a device. In addition, we classify the existing countermeasures and discuss their effectiveness and efficiency. The result of this work is a guide for selecting a set of countermeasures which provides a sufficient security level to meet the constraints of the embedded devices.
Abstract-For a secure hardware designer, the vast array of fault attacks and countermeasures looks like a jungle. This paper aims at providing a guide through this jungle and at helping a designer of secure embedded devices to protect a design in the most efficient way. We classify the existing fault attacks on implementations of cryptographic algorithms on embedded devices according to different criteria. By doing do, we expose possible security threats caused by fault attacks and propose different classes of countermeasures capable of preventing them.
When using Elliptic Curve Cryptography (ECC) in constrained embedded devices such as RFID tags, López-Dahab's method along with the Montgomery powering ladder is considered as the most suitable method. It uses x-coordinate only for point representation, and meanwhile offers intrinsic protection against simple power analysis. This paper proposes a low-cost fault detection mechanism for Elliptic Curve Scalar Multiplication (ECSM) using the López-Dahab algorithm. Introducing minimal changes to the last round of the algorithm, we make it capable of detecting faults with a very high probability. In addition, by reusing the existing resources, we significantly reduce both performance losses and area overhead compared to other methods in this scenario. This method is suitable especially for constrained devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.