Covid‐19 is an acute respiratory infection and presents various clinical features ranging from no symptoms to severe pneumonia and death. Medical expert systems, especially in diagnosis and monitoring stages, can give positive consequences in the struggle against Covid‐19. In this study, a rule‐based expert system is designed as a predictive tool in self‐pre‐diagnosis of Covid‐19. The potential users are smartphone users, healthcare experts and government health authorities. The system does not only share the data gathered from the users with experts, but also analyzes the symptom data as a diagnostic assistant to predict possible Covid‐19 risk. To do this, a user needs to fill out a patient examination card that conducts an online Covid‐19 diagnostic test, to receive an unconfirmed online test prediction result and a set of precautionary and supportive action suggestions. The system was tested for 169 positive cases. The results produced by the system were compared with the real PCR test results for the same cases. For patients with certain symptomatic findings, there was no significant difference found between the results of the system and the confirmed test results with PCR test. Furthermore, a set of suitable suggestions produced by the system were compared with the written suggestions of a collaborated health expert. The suggestions deduced and the written suggestions of the health expert were similar and the system suggestions in line with suggestions of the expert. The system can be suitable for diagnosing and monitoring of positive cases in the areas other than clinics and hospitals during the Covid‐19 pandemic. The results of the case studies are promising, and it demonstrates the applicability, effectiveness, and efficiency of the proposed approach in all communities.
Health 3.0 is a health‐related extension of the Web 3.0 concept. It is based on the semantic Web which provides for semantically organizing electronic health records of individuals. Health 3.0 is rapidly gaining ground as a new research topic in many academic and industrial disciplines. Due to the recent rapid spread of wearable sensors and smart devices with access to social media, migrating health services from the traditional centre‐based health system to personal health care is inevitable. In this current era of greater personalization, treating patients' health problems according to their profile and medical data gathered is possible using the latest information technologies. Consequently, personalized health recommender systems have gained importance. Empowering the utility of advanced Web technology in personalized health systems is still challenging due to pressing issues, such as lack of low cost and accurate smart medical sensors and wearable devices, existing investment in legacy Web system architecture in health sector, heterogeneity of medical data gathered by myriad health care institutions and isolated health services, and interoperability issues as well as multi‐dimensionality of medical data. By tracing recent developments, this paper offers a systematic review through recent research on semantic Web‐enabled personalized health systems, namely, semanticized personalized health recommender systems with the key enabling technologies, major applications, and successful case studies. Critical questions derived from the research studies were discussed, and main directions of open issues were identified leading to recommendations for future study in the field of personalized health recommender systems.
In this article, a research project on mobile safe food consumption system (FoodWiki) is discussed that performs its own inferencing rules in its own knowledge base. Currently, the developed rules examines the side effects that are causing some health risks: heart disease, diabetes, allergy, and asthma as initial. There are thousands compounds added to the processed food by food producers with numerous effects on the food: to add color, stabilize, texturize, preserve, sweeten, thicken, add flavor, soften, emulsify, and so forth. Those commonly used ingredients or compounds in manufactured foods may have many side effects that cause several health risks such as heart disease, hypertension, cholesterol, asthma, diabetes, allergies, alzheimer etc. according to World Health Organization. Safety in food consumption, especially by patients in these risk groups, has become crucial, given that such health problems are ranked in the top ten health risks around the world. It is needed personal e-health knowledge base systems to help patients take control of their safe food consumption. The systems with advanced semantic knowledge base can provide recommendations of appropriate foods before consumption by individuals. The proposed FoodWiki system is using a concept based search mechanism that performs on thousands food compounds to provide more relevant information.
This paper discusses the design, implementation, and potential use of an ontology‐based mobile pediatric consultation and monitoring system, which is a smart healthcare expert system for pediatric patients. The proposed system provides remote consultation and monitoring of pediatric patients during their illness at places distant from medical service areas. The system not only shares instant medical data with a pediatrician but also examines the data as a smart medical assistant to detect any emergency situation. In addition, it uses an inference engine to infer instant suggestions for performing certain initial medical treatment steps when necessary. The applied methodologies and main technical contributions have three aspects: (a) pediatric consultation and monitoring ontology, (b) semantic Web rule knowledge base, and (c) inference engine. Two case studies with real pediatric patients are provided and discussed. The reported results of the applied case studies are promising, and they demonstrate the applicability, effectiveness, and efficiency of the proposed approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.