In this work, we present experimental results of a prompt gamma camera for real-time proton beam range verification. The detection system features a pixelated Cerium doped lutetium based scintillation crystal, coupled to Silicon PhotoMultiplier arrays, read out by dedicated electronics. The prompt gamma camera uses a knife-edge slit collimator to produce a 1D projection of the beam path in the target on the scintillation detector. We designed the detector to provide high counting statistics and high photo-detection efficiency for prompt gamma rays of several MeV. The slit design favours the counting statistics and could be advantageous in terms of simplicity, reduced cost and limited footprint. We present the description of the realized gamma camera, as well as the results of the characterization of the camera itself in terms of imaging performance. We also present the results of experiments in which a polymethyl methacrylate phantom was irradiated with proton pencil beams in a proton therapy center. A tungsten slit collimator was used and prompt gamma rays were acquired in the 3-6 MeV energy range. The acquisitions were performed with the beam operated at 100 MeV, 160 MeV and 230 MeV, with beam currents at the nozzle exit of several nA. Measured prompt gamma profiles are consistent with the simulations and we reached a precision (2σ) in shift retrieval of 4 mm with 0.5 × 10(8), 1.4 × 10(8) and 3.4 × 10(8) protons at 100, 160 and 230 MeV, respectively. We conclude that the acquisition of prompt gamma profiles for in vivo range verification of proton beam with the developed gamma camera and a slit collimator is feasible in clinical conditions. The compact design of the camera allows its integration in a proton therapy treatment room and further studies will be undertaken to validate the use of this detection system during treatment of real patients.
Quantitative positron emission tomography (PET) imaging relies on accurate attenuation correction. Predicting attenuation values from magnetic resonance (MR) images is difficult because MR signals are related to proton density and relaxation properties of tissues. Here, we propose a method to derive the attenuation map from a transmission scan. An annulus transmission source is positioned inside the field-of-view of the PET scanner. First a blank scan is acquired. The patient is injected with FDG and placed inside the scanner. 511-keV photons coming from the patient and the transmission source are acquired simultaneously. Time-of-flight information is used to extract the coincident photons originating from the annulus. The blank and transmission data are compared in an iterative reconstruction method to derive the attenuation map. Simulations with a digital phantom were performed to validate the method. The reconstructed attenuation coefficients differ less than 5% in volumes of interest inside the lungs, bone, and soft tissue. When applying attenuation correction in the reconstruction of the emission data a standardized uptake value error smaller than 9% was obtained for all tissues. In conclusion, our method can reconstruct the attenuation map and the emission data from a simultaneous scan without prior knowledge about the anatomy or the attenuation coefficients of the tissues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.