Shallow oil reservoirs, commonly associated with heavy oil, require massive completion programs. The reason for these huge completion programs is due to the need for larger hole sizes compared with standard borehole developments. The commercial feasibility of these developments relies on repetitive and predictable drilling performance in large hole sizes and high-angle curvatures to reach very soft formations. One such development is the Mariner field in the UK sector of the North Sea, which was discovered 30 years ago. This field, located 140 km east of the Shetland Islands in 110m water depths, is the largest new field development in the UKCS. Two targeted reservoirs contain heavy oil in shallow unconsolidated sands in the Maureen and Heimdal formations. Field objectives included the following:100+ well targets at the rate of ± 12 wells per yearTimely well delivery scheduleTechnology application to lower Drilling &Well operations sanctioned cost by at least 25% The construction program for the Mariner field required the 20-in. casing shoe to be set at a shallow true vertical depth subsea (TVDSS) of ±750m, at inclinations between 35 and 55°, and build rates of 3 to 5°/30m in the ultra-soft formations with an unconfined compressive strength (UCS) of < 1000 psi. Although the advancements made in rotary steerable system (RSS) technologies are capable of generating 15 to 18°/30m dogleg severity (DLS) output, these technologies have historically been confined to small hole sizes extending from 5⅞ in. to 9½ in. This paper describes the development of the world’s first RSS bottom hole assembly (BHA) design, capable of delivering repetitive and predictable performance to drill large hole sections to high inclinations in shallow, ultra-soft formations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.