Desmin is a muscle-specific intermediate filament protein that has fundamental role in muscle structure and force transmission. Whereas human desmin protein is encoded by a single gene, two desmin paralogs (desma and desmb) exist in zebrafish. Desma and desmb show differential spatiotemporal expression during zebrafish embryonic and larval development, being similarly expressed in skeletal muscle until hatching, after which expression of desmb shifts to gut smooth muscle. We generated knockout (KO) mutant lines carrying loss-of-function mutations for each gene by using CRISPR/Cas9. Mutants are viable and fertile, and lack obvious skeletal muscle, heart or intestinal defects. In contrast to morphants, knockout of each gene did not cause any overt muscular phenotype, but did alter calcium flux in myofibres. These results point to a possible compensation mechanism in these mutant lines generated by targeting nonsense mutations to the first coding exon.
It has been a long time since researchers have focused on the cytoskeletal proteins’ unconventional functions in the nucleus. Subcellular localization of a protein not only affects its functions but also determines the accessibility for cellular processes. Desmin is a muscle-specific, cytoplasmic intermediate filament protein, the cytoplasmic roles of which are defined. Yet, there is some evidence pointing out nuclear functions for desmin. In silico and wet lab analysis shows that desmin can enter and function in the nucleus. Furthermore, the candidate nuclear partners of desmin support the notion that desmin can serve as a transcriptional regulator inside the nucleus. Uncovering the nuclear functions and partners of desmin will provide a new insight into the biological significance of desmin.
Desmin is a muscle-specific intermediate filament protein that has fundamental role in muscle structure and force transmission. Whereas human desmin protein is encoded by a single gene, two desmin paralogs (desma and desmb) exist in zebrafish. Desma and desmb show differential spatiotemporal expression during zebrafish embryonic and larval development, being similarly expressed in skeletal muscle until hatching, after which expression of desmb shifts to gut smooth muscle. We generated knockout (KO) mutant lines carrying loss-of-function mutations for each gene by using CRISPR/Cas9. Desma;desmb double mutants are viable and fertile, and lack obvious skeletal muscle, heart or intestinal defects. In contrast to morphants, knockout of each gene did not cause any overt muscular phenotype, but did alter calcium flux in myofibres. These results point to a possible compensation mechanism in these mutant lines generated by targeting nonsense mutations to the first coding exon.
Desmin is a muscle specific intermediate filament protein located in cytoplasm. Lamin B, on the other hand, is a nuclear intermediate filament protein. There are studies suggesting a possible interaction between desmin and lamin B yet there is no physical evidence. In the present study, we have shown for the first time a physical interaction between desmin and lamin B via reciprocal co‐immunoprecipitation from muscle tissue of wild type AB zebrafish (Danio rerio, Hamilton). The interaction between desmin and lamin B might be a lead on a novel nucleocytoplasmic communication network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.