The inflammasome is a cytoplasmic multiprotein complex responsible for the activation of inflammatory caspases (caspase-1, -4, and -5) in response to pathogen- and/or damage-associated molecular patterns or to homeostasis-altering molecular pathways, and for the consequent release of the pro-inflammatory cytokines interleukin (IL)-1ß and IL-18. Taking in account the complexity of inflammasome activation and that several regulatory steps are involved in maintaining its physiologic role in homeostasis and innate immune response, it does not surprise that several genetic variants in inflammasome components have been associated with common pathologies in the general population, such as autoimmune disorders, cardiovascular diseases, obesity and associated metabolic syndrome, neurodegenerative diseases, and cancer. Moreover, the susceptibility to infectious agents and/or to develop severe complications during infections also has been related to inflammasome genetics. In this work, we revised genetic association studies about polymorphisms of main inflammasome genes in sterile as well as infectious diseases, trying to depict the genetic contribution of inflammasome in disease pathogenesis.
Introduction:
NLRP3 inflammasome plays a key role in dendritic cells (DC) activation in response to vaccine adjuvants, however we previously showed that it is not properly activated in DC from HIV-infected patients (HIV-DC), explaining, at least in part, the poor response to immunization of these patients. Taking in account that several cytoplasmic receptors are able to activate inflammasome, and that bacterial components are considered as a novel and efficient adjuvant, we postulated that bacterial flagellin (FLG), a natural ligand of NAIP/NLRC4 inflammasome, could rescue the activation of the complex in HIV-DC.
Objective:
Demonstrate that FLG is able to activate monocyte-derived dendritic cells from HIV-infected individuals better than LPS, and to what extent the entity of inflammasome activation differs between DC from HIV-infected patients and healthy donors.
Methods:
Monocyte-derived dendritic cells from HIV-infected patients (HIV-DC) and healthy donors (HD-DC) were stimulated with FLG, and inflammasome as well as DC activation (phenotypic profile, cytokine production, autologous lymphocytes activation) were compared. Chemical and genetic inhibitors were used to depict the relative contribution of NLRC4 and NLRP3 in HIV/HD-DC response to FLG.
Results:
FLG properly activates HD-DC and HIV-DC. FLG induces higher inflammasome activation than LPS in HIV-DC. FLG acts through NLRC4 and NLRP3 in HD-DC, but at a lesser extent in HIV-DC due to intrinsic NLRP3 defect.
Conclusions:
FLG by-passes NLRP3 defect in HIV-DC, through the activation of NAIP/NLRC4 inflammasome, indicating possible future use of the bacterial component as an efficient adjuvant in immunocompromised individuals.
The NLRP1 variant rs12150220 (L155H) was associated with the development of preeclampsia (OR = 1.58), suggesting a role of this inflammasome receptor in the pathogenesis of this multifactorial disorder.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.