Migration of stacked or zero-offset sections is based on deriving the wave amplitude in space from wave field observations at the surface. Conventionally this calculation has been carried out through a depth extrapolation. We examine the alternative of carrying out the migration through a reverse time extrapolation. This approach may offer improvements over existing migration methods, especially in cases of steeply dipping structures with strong velocity contrasts. This migration method is tested using appropriate synthetic data sets.
A Fourier or pseudospectral forward‐modeling algorithm for solving the two‐dimensional acoustic wave equation is presented. The method utilizes a spatial numerical grid to calculate spatial derivatives by the fast Fourier transform. Time derivatives which appear in the wave equation are calculated by second‐order differencing. The scheme requires fewer grid points than finite‐difference methods to achieve the same accuracy. It is therefore believed that the Fourier method will prove more efficient than finite‐difference methods, especially when dealing with three‐dimensional models. The Fourier forward‐modeling method was tested against two problems, a single‐layer problem with a known analytic solution and a wedge problem which was also tested by physical modeling. The numerical results agreed with both the analytic and physical model results. Furthermore, the numerical model facilitates the explanation of certain events on the time section of the physical model which otherwise could not easily be taken into account.
No abstract
Conventional finite‐difference migration has relied on one‐way wave equations which allow energy to propagate only downward. Although generally reliable, such equations may not give accurate migration when the structures have strong lateral velocity variations or steep dips. The present study examined an alternative approach based on the full acoustic wave equation. The migration algorithm which developed from this equation was tested against synthetic data and against physical model data. The results indicated that such a scheme gives accurate migration for complicated structures.
In seismic modeling and in migration it is often desirable to use a wave equation (with varying velocity but constant density) which does not produce interlayer reverberations. The conventional approach has been to use a one‐way wave equation which allows energy to propagate in one dominant direction only, typically this direction being either upward or downward (Claerbout, 1972). We introduce a two‐way wave equation which gives highly reduced reflection coefficients for transmission across material boundaries. For homogeneous regions of space, however, this wave equation becomes identical to the full acoustic wave equation. Possible applications of this wave equation for forward modeling and for migration are illustrated with simple models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.