A multicenter clinical trial assessed the performance of the Cepheid Xpert C. difficile assay on stool specimens collected from patients suspected of having Clostridium difficile infection (CDI). A total of 2,296 unformed stool specimens, collected from seven study sites, were tested by Xpert C. difficile enrichment culture followed by cell culture cytotoxicity testing of the isolates (i.e., toxigenic culture with enrichment) and the study sites' standard C. difficile test methods. The methods included enzyme immunoassay (EIA), direct cytotoxin testing, and two-and three-step algorithms using glutamate dehydrogenase (GDH) screening followed by either EIA or EIA and an in-house PCR assay. All C. difficile strains were typed by PCR-ribotyping. Compared to results for toxigenic culture with enrichment, the sensitivity, specificity, and positive and negative predictive values of the Xpert assay were 93.5, 94.0, 73.0, and 98.8%, respectively. The overall sensitivity of the EIAs compared to that of enrichment culture was 60.0%, and the sensitivity of combined GDH algorithms was 72.9%; both were significantly lower than that of Xpert C. difficile (P < 0.001 and P ؍ 0.03, respectively). The sensitivity of the EIA was significantly lower than that of the Xpert C. difficile assay for detection of ribotypes 002, 027, and 106 (P < 0.0001, P < 0.0001, and P ؍ 0.004, respectively, Fisher's exact test), and the sensitivity of GDH algorithms for ribotypes other than 027 was lower than that for Xpert C. difficile (P < 0.001). The Xpert C. difficile assay is a simple, rapid, and accurate method for detection of toxigenic C. difficile in unformed stool specimens and is minimally affected by strain type compared to EIA and GDH-based methods.
Accurate strain typing is critical for understanding the changing epidemiology of Clostridium difficile infections. We typed 350 isolates of toxigenic C. difficile from 2008 to 2009 from seven laboratories in the United States and Canada. Typing was performed by PCR-ribotyping, pulsed-field gel electrophoresis (PFGE), and restriction endonuclease analysis (REA) of whole-cell DNA. The Cepheid Xpert C. difficile test for presumptive identification of 027/NAP1/BI isolates was also tested directly on original stool samples. Of 350 isolates, 244 (70%) were known PCR ribotypes, 224 (68%) were 1 of 8 common REA groups, and 187 (54%) were known PFGE types. Eighty-four isolates typed as 027, NAP1, and BI, and 83 of these were identified as presumptive 027/NAP1/BI by Xpert C. difficile. Eight additional isolates were called presumptive 027/NAP1/BI by Xpert C. difficile, of which three were ribotype 027. Five PCR ribotypes contained multiple REA groups, and three North American pulsed-field (NAP) profiles contained both multiple REA groups and PCR ribotypes. There was modest concordance of results among the three methods for C. difficile strains, including the J strain (ribotype 001 and PFGE NAP2), the toxin A-negative 017 strain (PFGE NAP9 and REA type CF), the 078 animal strain (PFGE NAP7 and REA type BK), and type 106 (PFGE NAP11 and REA type DH). PCR-ribotyping, REA, and PFGE provide different but overlapping patterns of strain clustering. Unlike the other methods, the Xpert C. difficile 027/NAP1/BI assay gave results directly from stool specimens, required only 45 min to complete, but was limited to detection of a single strain type.
We developed a 90-minute, urine based test that is simple to perform for the detection of bladder cancer. The test can help guide physician decision making in the management of bladder cancer. Additional evaluation in a prospective study is needed to establish the clinical usefulness of this assay.
The expression of the modified gene for a truncated form of the cryIA(c) gene, encoding the insecticidal portion of the lepidopteran-active CryIA(c) protein from Bacillus thuringiensis var. kurstaki (B.t.k.) HD73, under control of the Arabidopsis thaliana ribulose-1,5-bisphosphate carboxylase (Rubisco) small subunit ats1A promoter with and without its associated transit peptide was analyzed in transgenic tobacco plants. Examination of leaf tissue revealed that the ats1A promoter with its transit peptide sequence fused to the truncated CryIA(c) protein provided a 10-fold to 20-fold increase in cryIA(c) mRNA and protein levels compared to gene constructs in which the cauliflower mosaic virus 35S promoter with a duplication of the enhancer region (CaMV-En35S) was used to express the same cryIA(c) gene. Transient expression assays in tobacco protoplasts and the whole plant results support the conclusion that the transit peptide plus untranslated sequences upstream of that region are both required for the increase in expression of the CryIA(c) protein. Furthermore, the CaMV-En35S promoter can be used with the Arabidopsis ats1A untranslated leader and transit peptide to increase expression of this protein. While subcellular fractionation revealed that the truncated CryIA(c) protein fused to the ats1A transit peptide is located in the chloroplast, the increase in gene expression is independent of targeting of the CryIA(c) protein to the chloroplast. The results reported here provide new insight into the role of 5' untranslated leader sequences and translational fusions to increase heterologous gene expression, and they demonstrate the utility of this approach in the development of insect-resistant crops.
We have developed a gene expression system in Escherichia coli that contains a portable Shine-Dalgarno region. Transcription of this system is under the direction of a hybrid promoter (tacII) derived from trp and lac-UV5 promoter sequences which is followed by a region that encodes a portable Shine-Dalgarno region (PSDR). Using a series of synthetic PSDRs, we varied the four bases that follow the Shine-Dalgarno (SD) region. We found that the presence of four A residues or four T residues in this position gives the highest translational efficiency. The presence of four C residues reduces the translation efficiency by 50% as compared with PSDRs with A or T residues. The presence of four G residues following the SD region lowers the translational efficiency by at least 75% with respect to PSDRs with A or T residues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.