The parasitic purple witchweed [Striga hermonthica (Del.) Benth.] is a serious constraint to maize production in sub-Saharan Africa, especially in poor soils. Various Striga spp. control measures have been developed, but these have not been assessed in an integrated system. This study was conducted to evaluate a set of promising technologies for S. hermonthica management in western Kenya. We evaluated three maize genotypes either intercropped with peanut (Arachis hypogaea L.), soybean [Glycine max (L.) Merr.], or silverleaf desmodium [Desmodium uncinatum (Jacq.) DC] or as a sole crop at two locations under artificial S. hermonthica infestation and at three locations under natural S. hermonthica infestation between 2011 and 2013. Combined ANOVA showed significant (P < 0.05) cropping system and cropping system by environment interactions for most traits measured. Grain yield was highest for maize grown in soybean rotation (3,672 kg ha ) under natural infestation. Grain yield was highest for the Striga spp.-resistant hybrid under both methods of infestation. A lower number of emerged S. hermonthica plants per square meter were recorded at 10 and 12 wk after planting on maize grown under D. uncinatum in the artificial S. hermonthica infestation. A combination of herbicide-resistant maize varieties intercropped with legumes was a more effective method for S. hermonthica control than individualcomponent technologies. Herbicide-resistant and Striga spp.-resistant maize integrated with legumes would help reduce the Striga spp. seedbank in the soil. Farmers should be encouraged to adopt an integrated approach to control Striga spp. for better maize yields.
Genomic Selection of Zinc Content between the training and prediction sets in further studies. GS outperformed MAS (marker-assisted-selection) on predicting the kernel Zn concentration in maize, the decision of a breeding strategy to implement GS individually or to implement MAS and GS stepwise for improving kernel Zn concentration in maize requires further research. Results of this study provide valuable information for understanding how to implement GS for improving kernel Zn concentration in maize.
Genetic improvement of maize with elevated levels of zinc (Zn) can reduce Zn deficiency among populations who rely on maize as a staple. Inbred lines of quality protein maize (QPM) and non-QPM with elevated Zn levels in the kernel have been identified. However, information about the optimal strategy to utilize the germplasm in breeding for high-Zn concentration is lacking. As a preliminary step, this study was conducted to ascertain the potential of QPM, non-QPM, or a combination of QPM and non-QPM hybrids for attaining desirable Zn concentration. Twenty elite inbreds, 10 QPM and 10 non-QPM, were crossed according to a modified mating design to generate hybrids, which were evaluated in four environments in Mexico during 2015 and 2016 in order to evaluate their merits as parents of hybrids. The highest mean values of Zn were observed when high-Zn QPM lines were crossed with high-Zn non-QPM lines. Hybrids with high Zn and grain yield were identified. General combining ability (GCA) effects for Zn concentration were more preponderant than specific combining ability (SCA) effects, suggesting the importance of additive gene action for the inheritance of Zn.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.