AbstractPatterns of genetic structure in highly mobile marine vertebrates may be accompanied by phenotypic variation. Most studies in marine turtles focused on population genetic structure have been performed at rookeries. We studied whether genetic and morphological variation of the endangered green turtle (Chelonia mydas) is consistent geographically, focusing on foraging grounds. An association between population genetic structure and body shape variation at broad (inter-lineage) and fine (foraging grounds) scales was predicted and analysed using mitochondrial DNA and geometric morphometrics. Although genetic and phenotypic differentiation patterns were congruent between lineages, no fine-scale association was found, suggesting adaptive divergence. Connectivity among Pacific foraging grounds found here suggests that temperatures of ocean surface currents may influence the genetic structure of C. mydas on a broad scale. Our results suggest that vicariance, dispersal, life-history traits and ecological conditions operating in foraging grounds have shaped the intraspecific morphology and genetic diversity of this species. Considering a range of geographic and temporal scales is useful when management strategies are required for cosmopolitan species. Integrating morphological and genetic tools at different spatial scales, conservation management is proposed based on protection of neutral and adaptive diversity. This approach opens new questions and challenges, especially regarding conservation genetics in cosmopolitan species.
Fibropapillomatosis (FP) is characterized by multiple fibroepithelial tumors in all parts of the skin and has been reported in sea turtles worldwide. Clinically infected individuals are often emaciated and anemic. In Mexico, however, there are few records of this disease. In this study of green turtles Chelonia mydas in Laguna San Ignacio in Baja California Sur (BCS), we noted one juvenile with multifocal fibropapilloma lesions on the external upper surface of its eyes and hind flippers. Light microscopy revealed hyperkeratosis, epidermal hyperplasia, dermal papillary projections, and fibroblast proliferation. Electron microscopy revealed viral particles. Biopsies of normal skin were done to determine the origin of the turtle through genetic analysis. Its mitochondrial DNA matched that of a haplotype (CMP2) from a Hawaiian green turtle population. Finding FP in a turtle captured in BCS elucidates the need for further monitoring along the west coast of Mexico. Further investigation should include testing tumors to detect and characterize any chelonid herpesviruses and explore any association with FP and other diseases that pose a health risk to other sea turtle species. Received March 26, 2016; accepted August 3, 2016.
The olive ridley (Lepidochelys olivacea) is the most abundant of all seven sea turtles, found across the tropical regions of the Atlantic, Pacific, and Indian Oceans in over 80 different countries all around the globe. Despite being the most common and widely distributed sea turtle, olive ridley populations have been declining substantially for decades. Worldwide, olive ridleys have experienced a 30–50% decline, putting their populations at risk and being considered an Endangered Species by the IUCN. Natural habitat degradation, pollution, bycatch, climate change, predation by humans and animals, infectious diseases and illegal trade are the most notorious threats to explain olive ridley populations rapidly decline. The present review assesses the numerous dangers that the olive ridley turtle has historically faced and currently faces. To preserve olive ridleys, stronger conservation initiatives and strategies must continue to be undertaken. Policies and law enforcement for the protection of natural environments and reduction in the effects of climate change should be implemented worldwide to protect this turtle species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.