The effects of a grain-based subacute ruminal acidosis (SARA) challenge on translocation of lipopolysaccharide (LPS) into the peripheral circulation, acute phase proteins in blood and milk, feed intake, milk production and composition, and blood metabolites were determined in 8 lactating Holstein cows. Between wk 1 and 5 of 2 successive 6-wk periods, cows received a total mixed ration ad libitum with a forage to concentrate (F:C) ratio of 50:50. In wk 6 of both periods, the SARA challenge was conducted by replacing 21% of the dry matter of the total mixed ration with pellets containing 50% wheat and 50% barley. Rumen pH was monitored continuously using indwelling pH probes in 4 rumen cannulated cows. Rumen fluid samples were collected 15 min before feed delivery and at 2, 4, 6, 12, 14, 16, 18, and 24 h after feed delivery for 2 d during wk 5 (control) and wk 6 (SARA). Peripheral blood samples were collected using jugular catheters 15 min before feeding and at 6 and 12 h after feeding at the same days of the rumen fluid collections. The SARA challenge significantly reduced average daily pH from 6.17 to 5.97 and increased the duration of rumen pH below pH 5.6 from 118 to 279 min/d. The challenge reduced dry matter intake (16.5 vs. 19 kg/d), milk yield (28.3 vs. 31.6 kg/d), and milk fat (2.93 vs. 3.30%, 0.85 vs. 0.97 kg/d), and tended to increase milk protein percentage (3.42 vs. 3.29%), without affecting milk protein yield (1.00 vs. 0.98 kg/d). The challenge also increased the concentration of free LPS in rumen fluid from 28,184 to 107,152 endotoxin units (EU)/mL. This was accompanied by an increase in LPS in peripheral blood plasma (0.52 vs. <0.05 EU/mL) with a peak at 12 h after feeding (0.81 EU/mL). Concentrations of the acute phase proteins serum amyloid A, haptoglobin, and LPS-binding protein (LBP) in peripheral blood as well as LBP concentration in milk increased (438.5 vs. 167.4, 475.6 vs. 0, 53.1 vs. 18.2, and 6.94 vs. 3.02 microg/mL, respectively) during SARA. The increase in LBP in combination with the increase in LPS in peripheral blood provides additional evidence of translocation of LPS. Results suggest that the grain-based SARA challenge resulted in translocation of LPS into the peripheral circulation, and that this translocation triggered a systemic inflammatory response.
Subacute ruminal acidosis (SARA) is a metabolic disease in dairy cattle that occurs during early and mid-lactation and has traditionally been characterized by low rumen pH, but lactic acid does not accumulate as in acute lactic acid acidosis. It is hypothesized that factors such as increased gut permeability, bacterial lipopolysaccharides, and inflammatory responses may have a role in the etiology of SARA. However, little is known about the nature of the rumen microbiome during SARA. In this study, we analyzed the microbiome of 64 rumen samples taken from eight lactating Holstein dairy cattle using terminal restriction fragment length polymorphisms (TRFLP) of 16S rRNA genes and real-time PCR. We used rumen samples from two published experiments in which SARA had been induced with either grain or alfalfa pellets. The results of TRFLP analysis indicated that the most predominant shift during SARA was a decline in gram-negative Bacteroidetes organisms. However, the proportion of Bacteroidetes organisms was greater in alfalfa pellet-induced SARA than in mild or severe grain-induced SARA (35.4% versus 26.0% and 16.6%, respectively). This shift was also evident from the real-time PCR data for Prevotella albensis, Prevotella brevis, and Prevotella ruminicola, which are members of the Bacteroidetes. The real-time PCR data also indicated that severe grain-induced SARA was dominated by Streptococcus bovis and Escherichia coli, whereas mild grain-induced SARA was dominated by Megasphaera elsdenii and alfalfa pellet-induced SARA was dominated by P. albensis. Using discriminant analysis, the severity of SARA and degree of inflammation were highly correlated with the abundance of E. coli and not with lipopolysaccharide in the rumen. We thus suspect that E. coli may be a contributing factor in disease onset.
Highlights d Milk microbiota variability is affected by maternal factors and other milk components d Some factors have phylum-specific effects d Some variations in milk microbiota are sex-specific d Feeding method (at the breast versus pumped) was strongly associated with milk microbiota
The effects of a grain-based subacute ruminal acidosis (SARA) challenge (GBSC) and an alfalfa-pellet SARA challenge (APSC) on fermentation and endotoxins in the rumen and in the cecum, as well as on endotoxins in peripheral blood, were determined. Six nonlactating Holstein cows with cannulas in the rumen and cecum were used in the study. A 3×3 Latin square arrangement of treatments with 4-wk experimental periods was adopted. During the first 3 wk of each experimental period, all cows received a diet containing 70% forages [dry matter (DM) basis]. In wk 4 of each period, cows received 1 of the following 3 diets: the 70% forage diet fed during wk 1 to 3 (control), a diet in which 34% of the dietary DM was replaced with grain pellets made of 50% ground wheat and 50% ground barely (GBSC), or a diet in which 37% of dietary DM was replaced with pellets of ground alfalfa (APSC). Rumen pH was monitored continuously using indwelling pH probes, and rumen fluid, blood, cecal digesta, and fecal grab samples were collected immediately before feed delivery at 0900 h and at 6 h after feed delivery on d 3 and 5 of wk 4. The time for which rumen pH was below 5.6 was 56.4, 225.2, and 298.8 min/d for the control, APSC, and GBSC treatments, respectively. Compared with the control, SARA challenges resulted in similar reductions in cecal digesta pH, which were 7.07, 6.86, and 6.79 for the control, APSC, and GBSC treatments, respectively. Compared with the control, only GBSC increased starch content in cecal digesta, which averaged 2.8, 2.6, and 7.4% of DM for the control, APSC, and GBSC, respectively. Free lipopolysaccharide endotoxin (LPS) concentration in rumen fluid increased from 10,405 endotoxin units (EU)/mL in the control treatment to 30,715 and 168,391 EU/mL in APSC and GBSC, respectively. Additionally, GBSC increased the LPS concentration from 16,508 to 118,522 EU/g in wet cecal digesta, and from 12,832 to 93,154 EU/g in wet feces. The APSC treatment did not affect LPS concentrations in cecal digesta and feces. All concentrations of LPS in blood plasma were below the detection limit of >0.05 EU/mL of the technique used. Despite the absence of LPS in blood, only GBSC increased the concentration of LPS-binding protein in blood plasma, which averaged, 8.9, 9.5, and 12.1mg/L for the control, APSC, and GBSC treatments, respectively. This suggests that GBSC caused translocation of LPS from the digestive tract but that LPS was detoxified before entering the peripheral blood circulation. The higher LPS concentration in cecal digesta in the GBSC compared with the APSC suggests a higher risk of LPS translocation in the large intestine in GBSC than in APSC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.