Oil extraction operations as well as equipment failure and infrastructure vandalism have caused serious environmental pollution with crude oil spills world-wide. The remediation of the polluted sites is an environmental problem beckoning for solution. In this study, the possibility of pig droppings and pig bone char mixture (biostimulant) to stimulate and optimize crude oil biodegradation in soil was investigated. Exactly 500g of loamy soil was spiked with 3% (w/w) of crude oil. The spiked soil was amended with varying percentage mixtures of the biostimulant and labelled A – E. The spiked soil without biostimulant served as the Control. Each experiment was setup in six (6) replicates, carried out for six weeks, and destructively sampled and analysed on a weekly basis. The removal efficiencies of the biostimulated and unbiostimulated soils were observed to range from 66.70 to 86.70% and 3.69%, respectively. The biodegradation first-order rate constants ranged from 0.1978 to 0.3391wk-1 and 0.0050wk-1 for the biostimulated and unbiostimulated soils, respectively. Optimum removal of total petroleum hydrocarbon (TPH) was observed for biostimulated soil C comprising 50% bone char and 50% pig droppings. Results from biostimulated soils A, B, D and E indicated that pig droppings is a more effective biostimulant than pig bone char. A first-order kinetic model adequately predicted the removal of TPH with the optimum biostimulant. It is concluded that using agro-organic waste materials such as pig droppings and pig bone char in a ratio of 1:1 can offer a simple, effective, inexpensive and environmentally friendly solution to the problem of soil contamination with crude oil.
This research modelled the effect of pH on the remediation of crude oil-polluted soil using biochar blend. The biochar blends, PL-500, pW-500, and RS-400, were made by pyrolyzing poultry litter, pine wood, and rice straw at varied temperatures and times. The pH of the crude oil polluted soil was 4.72. Response surface experimental design mixed biochar to remediate total petroleum hydrocarbons (TPH). Following 30 days of bioremediation, 15g PL-500, 3g PW-500 and 6g RS-400, removed a maximum of 46% TPH. The experimental data were statistically modelled and optimized using design expert software and response surface methods. Analysis of variance (ANOVA) was used to determine the significance of each regression coefficient. Biochar blend improved soil pH to 6.9 following remediation. ANOVA indicated that PL-500 was significant for predicting TPH % degradation at p =0.0290, suggesting that its high pH, nutrient, and soil water conservation values made it more effective in remediating TPH. The quadratic model predicts with R2 =0.8567. A model fit statistics were used to examine soil pH influence on TPH remediation. RSM study indicated a good positive association between statistical model and experiment with R2 = 0.7612. The model fits experimental data and predicts that . Remediation requires soil pH and biochar's alkalinity raised soil pH to 6.9, which promoted hydrocarbon-utilizing bacteria.
This study investigated the use of microbial analysis as a bioremediation option for remediating petroleum sludge, which is part of the waste stream generated in the petroleum industry. The aim is to reduce environmental burden caused by the discharge of untreated sludge. Sludge sample was cultured in other to isolate microorganisms for the sludge treatment. The selected strain of the organisms after screening were Aspergillus flavus, Aspergillus niger, Verticillus sp, Penicillum sp, and Microsporium audouinii. Bioreactors (labeled A, B, C, D
Petroleum hydrocarbon spill on land pollutes soil and reduces its ecosystem. Hydrocarbon transport in the soil is aided by several biological, physical, and chemical processes. However, pore characteristics play a major role in the distribution within the soil matrix. Restoring land use after spills necessitates remediation using cost-effective technologies. Several remediation technologies have been demonstrated at different scales, and research is ongoing to improve their performances towards the reduction of treatment costs. The process of removing the contaminants in the soil is through one or a combination of containment, separation, and degradation methods under the influence of biological, physical, chemical, and electrically-dominated processes. Generally, performance improvement is achieved through the introduction of products/materials and/or energy. Nevertheless, the technologies can be categorized based on effectiveness period as short, medium, and long term. The treatment cost of short, medium, and long-term technologies are usually in the range of $39 – 331/t (/tonne), $22 – 131/t, and $8 – 131/t, respectively. However, the total cost depends on other factors such as site location, capital cost, and permitting. This review compiles cost-saving strategies reported for different techniques used in remediating petroleum hydrocarbon polluted soil. We discuss the principles of contaminant removal, performance enhancing methods, and the cost-effectiveness analysis of selected technologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.