Comprehensive studies on the processes involved in photosynthetic acclimation after a sudden change in light regime are scarce, particularly for trees. We tested (i) the ability of photosynthetic acclimation in the foliage of walnut trees growing outdoors after low-to-high and high-to-low light transfers made early or late in the vegetation cycle, and (ii) the relative importance of changes in total leaf nitrogen versus changes in the partitioning of leaf nitrogen between the different photosynthetic functions during a 2 month period after transfer. Changes in maximum carboxylation rate, light-saturated electron transport rate, respiration rate, total leaf nitrogen, ribulose 1·5-bisphosphate carboxylase/oxygenase (Rubisco) and total chlorophylls were surveyed before and after the change in light regime. Respiration rate acclimated fully within 1 week of transfer, and full acclimation was observed 1 month after transfer for the amount of Rubisco. In contrast, total nitrogen and photosynthetic capacity acclimated only partially during the 2 month period. Changes in photosynthetic capacity were driven by changes in both total leaf nitrogen and leaf nitrogen partitioning. The extent of acclimation also depended strongly on leaf age at the time of the change in light regime.
Growing mixtures of annual arable crop species or genotypes is a promising way to improve crop production without increasing agricultural inputs. To design optimal crop mixtures, choices of species, genotypes, sowing proportion, plant arrangement, and sowing date need to be made but field experiments alone are not sufficient to explore such a large range of factors. Crop modeling allows to study, understand and ultimately design cropping systems and is an established method for sole crops.Recently, modeling started to be applied to annual crop mixtures as well.Here, we review to what extent crop simulation models and individual-based models are suitable to capture and predict the specificities of annual crop mixtures. We argued that: 1) The crop mixture spatio-temporal heterogeneity (influencing the occurrence of ecological processes) determines the choice of the modeling approach (plant or crop centered). 2) Only few crop models (adapted from sole crop models) and individual-based models currently exist to simulate annual crop mixtures. 3) Crop models are mainly used to address issues related to crop mixtures management and to the integration of crop mixtures into larger scales such as the rotation, whereas individual-based models are mainly used to identify plant traits involved in crop mixture performance and to quantify the relative contribution of the different ecological processes (niche complementarity, facilitation, competition, plasticity) to crop mixture functioning.This review highlights that modeling of annual crop mixtures is in its infancy and gives to model users some important keys to choose the model based on the questions they want to answer, with awareness of the strengths and weaknesses of each of the modeling approaches. The authors declare that they have no conflict of interestDuchene O, Vian J-F, Celette F (2017) Intercropping with legume for agroecological cropping systems: Complementarity and facilitation processes and the importance of soil microorganisms. A review. Agric Dunbabin VM, Postma JA, Schnepf A, et al (2013) Modelling root-soil interactions using threedimensional models of root growth, architecture and function. Plant Soil 372:93-124. Durand J-L, Andrieu B, Barillot R, et al (2016) Designing and improving mixed grasslands: advances made in modelling forage variety performance. Fourrages 21-28 Duru M, Therond O, Fares M (2015) Designing agroecological transitions; A review. Agron Sustain
There is presently no consensus about the factor(s) driving photosynthetic acclimation and the intra-canopy distribution of leaf characteristics under natural conditions. The impact was tested of local (i) light quality (red/far red ratio), (ii) leaf irradiance (PPFD(i)), and (iii) transpiration rate (E) on total non-structural carbohydrates per leaf area (TNC(a)), TNC-free leaf mass-to-area ratio (LMA), total leaf nitrogen per leaf area (N(a)), photosynthetic capacity (maximum carboxylation rate and light-saturated electron transport rate), and leaf N partitioning between carboxylation and bioenergetics within the foliage of young walnut trees grown outdoors. Light environment (quantity and quality) was controlled by placing individual branches under neutral or green screens during spring growth, and air vapour pressure deficit (VPD) was prescribed and leaf transpiration and photosynthesis measured at branch level by a branch bag technique. Under similar levels of leaf irradiance, low air vapour pressure deficit decreased transpiration rate but did not influence leaf characteristics. Close linear relationships were detected between leaf irradiance and leaf N(a), LMA or photosynthetic capacity, and low R/FR ratio decreased leaf N(a), LMA and photosynthetic capacity. Irradiance and R/FR also influenced the partitioning of leaf nitrogen into carboxylation and electron light transport. Thus, local light level and quality are the major factors driving photosynthetic acclimation and intra-canopy distribution of leaf characteristics, whereas local transpiration rate is of less importance.
Herbivory alters plant gas exchange but the effects depend on the type of leaf damage. In contrast to ectophagous insects, leaf miners, by living inside the leaf tissues, do not affect the integrity of the leaf surface. Thus, the effect of leaf miners on CO 2 uptake and water-use efficiency by leaves remains unclear. We explored the impacts of the leaf-mining moth Phyllonorycter blancardella (Lepidoptera: Gracillariidae) on light responses of the apple leaf gas exchanges to determine the balance between the negative effects of reduced photosynthesis and potential positive impacts of increased water-use efficiency (WUE). Gas exchange in intact and mined leaf tissues was measured using an infrared gas analyser. The maximal assimilation rate was slightly reduced but the light response of net photosynthesis was not affected in mined leaf tissues. The transpiration rate was far more affected than the assimilation rate in the mine integument as a result of stomatal closure from moderate to high irradiance level. The WUE was about 200% higher in the mined leaf tissues than in intact leaf portions. Our results illustrate a novel mechanism by which plants might minimize losses from herbivore attacks; via trade-offs between the negative impacts on photosynthesis and the positive effects of increased WUE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.