In chordate phylogeny, changes in the nervous system, jaws, and appendages transformed meek filter feeders into fearsome predators. Gene duplication is thought to promote such innovation. Vertebrate ancestors probably had single copies of genes now found in multiple copies in vertebrates and gene maps suggest that this occurred by polyploidization. It has been suggested that one genome duplication event occurred before, and one after the divergence of ray-finned and lobe-finned fishes. Holland et al., however, have argued that because various vertebrates have several HOX clusters, two rounds of duplication occurred before the origin of jawed fishes. Such gene-number data, however, do not distinguish between tandem duplications and polyploidization events, nor whether independent duplications occurred in different lineages. To investigate these matters, we mapped 144 zebrafish genes and compared the resulting map with mammalian maps. Comparison revealed large conserved chromosome segments. Because duplicated chromosome segments in zebrafish often correspond with specific chromosome segments in mammals, it is likely that two polyploidization events occurred prior to the divergence of fish and mammal lineages. This zebrafish gene map will facilitate molecular identification of mutated zebrafish genes, which can suggest functions for human genes known only by sequence.
We have constructed a zebrafish genetic linkage map consisting of 705 simple sequence-length polymorphism markers (SSLPs). The map covers 2350 centimorgans (cM) of the zebrafish genome with an average resolution of 3.3 cM. It is a complete map in genetic mapping terms (there is one linkage group for each of the 25 chromosomes), and it has been confirmed by somatic-cell hybrids and centromere-mapping using half-tetrad analysis. The markers are highly polymorphic in the zebrafish strains used for genetic crosses and provide a means to compare genetic segregation of developmental mutations between laboratories. These markers will provide an initial infrastructure for the positional cloning of the nearly 600 zebrafish genes identified as crucial to vertebrate development,and will become the anchor for the physical map of the zebrafish genome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.