Knowledge of eukaryotic life cycles and associated genome dynamics stems largely from research on animals, plants, and a small number of "model" (i.e., easily cultivable) lineages. This skewed sampling results in an underappreciation of the variability among the many microeukaryotic lineages, which represent the bulk of eukaryotic biodiversity. The range of complex nuclear transformations that exists within lineages of microbial eukaryotes challenges the textbook understanding of genome and nuclear cycles. Here, we look in-depth at Foraminifera, an ancient (∼600 million-year-old) lineage widely studied as proxies in paleoceanography and environmental biomonitoring.We demonstrate that Foraminifera challenge the "rules" of life cycles developed largely from studies of plants and animals. To this end, we synthesize data on foraminiferal life cycles, focusing on extensive endoreplication within individuals (i.e., single cells), the unusual nuclear process called Zerfall, and the separation of germline and somatic function into distinct nuclei (i.e., heterokaryosis). These processes highlight complexities within lineages and expand our understanding of the dynamics of eukaryotic genomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.