The efficient selection and isolation of individual cells of interest from a mixed population is desired in many biomedical and clinical applications. Here we show the concept of using photoswitchable semiconducting polymer dots (Pdots) as an optical 'painting' tool, which enables the selection of certain adherent cells based on their fluorescence, and their spatial and morphological features, under a microscope. We first develop a Pdot that can switch between the bright (ON) and dark (OFF) states reversibly with a 150-fold contrast ratio on irradiation with ultraviolet or red light. With a focused 633-nm laser beam that acts as a 'paintbrush' and the photoswitchable Pdots as the 'paint', we select and 'paint' individual Pdot-labelled adherent cells by turning on their fluorescence, then proceed to sort and recover the optically marked cells (with 90% recovery and near 100% purity), followed by genetic analysis.
Goal
Add clarity to the relationship between deep and periventricular brain white matter hyperintensities, cerebral blood flow and cerebrovascular risk in older persons.
Methods
Deep and periventricular WMH and regional grey and white matter blood flow from arterial spin labeling were quantified from magnetic resonance imaging scans of 26 cognitively normal elder subjects stratified by cerebrovascular disease risk. FLAIR images were acquired using a high-resolution 3D sequence that reduced partial volume effects seen with slice-based techniques.
Findings
Deep WMH (dWMH) but not periventricular WMH (pWMH) were increased in the high CVD risk patients; pWMH but not dWMH were associated with decreased regional cortical (GM) blood flow. We also found blood flow in white matter is decreased in regions of both pWMH and dWMH, with a greater degree of decrease in pWMH areas.
Conclusion
WMH are usefully divided into dWMH and pWMH regions because they demonstrate differential effects. Three-dimensional regional WMH volume is a potentially valuable marker for CVD based on associations with cortical CBF and with white matter CBF.
This paper describes the dielectrophoretic (DEP) forces generated by a bipolar electrode (BPE) in a microfluidic device and elucidates the impact of faradaic ion enrichment and depletion (FIE and FID) on electric field gradients. DEP technologies for manipulating biological cells provide several distinct advantages over other cell-handling techniques including label-free selectivity, inexpensive device components, and amenability to single-cell and array-based applications. However, extension to the array format is nontrivial, and DEP forces are notoriously short-range, limiting device dimensions and throughput. BPEs present an attractive option for DEP because of the ease with which they can be arrayed. Here, we present experimental results demonstrating both negative DEP (nDEP) attraction and repulsion of B-cells from each a BPE cathode and anode. The direction of nDEP force in each case was determined by whether the conditions for FIE or FID were chosen in the experimental design. We conclude that FIE and FID zones generated by BPEs can be exploited to shape and extend the electric field gradients that are responsible for DEP force.
Background and purposeVascular dementia (VAD) is a complex diagnosis at times difficult to distinguish from Alzheimer's disease (AD). MRI scans often show white matter hyperintensities (WMH) in both conditions. WMH increase with age, and both VAD and AD are associated with aging, thus presenting an attribution conundrum. In this study, we sought to show whether the amount of WMH in deep white matter (dWMH), versus periventricular white matter (PVH), would aid in the distinction between VAD and AD, independent of age.MethodsBlinded semiquantitative ratings of WMH validated by objective quantitation of WMH volume from standardized MRI image acquisitions. PVH and dWMH were rated separately and independently by two different examiners using the Scheltens scale. Receiver operator characteristic (ROC) curves were generated using logistic regression to assess classification of VAD (13 patients) versus AD (129 patients). Clinical diagnoses were made in a specialty memory disorders clinic.ResultsUsing PVH rating alone, overall classification (area under the ROC curve, AUC) was 75%, due only to the difference in age between VAD and AD patients in our study and not PVH. In contrast, dWMH rating produced 86% classification accuracy with no independent contribution from age. A global Longstreth rating that combines dWMH and PVH gave an 88% AUC.ConclusionsIncreased dWMH indicate a higher likelihood of VAD versus AD. Assessment of dWMH on MRI scans using Scheltens and Longstreth scales may aid the clinician in distinguishing the two conditions.
Ensemble-decision aliquot ranking (eDAR) is a sensitive and high-throughput method to analyze circulating tumor cells (CTCs) from peripheral blood. Here, we report the next generation of eDAR, where we designed and optimized a new hydrodynamic switching scheme for the active sorting step in eDAR, which provided fast cell sorting with an improved reproducibility and stability. The microfluidic chip was also simplified by incorporating a functional area for subsequent purification using microslits fabricated by standard lithography method. Using the reported second generation of eDAR, we were able to analyze 1-mL of whole-blood samples in 12.5 min, with a 95% recovery and a zero false positive rate (n=15).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.