Background: Tideglusib is a GSK-3 inhibitor currently undergoing clinical trials for Alzheimer disease and progressive supranuclear palsy. Results: Removal of unbound compound does not recover the enzyme activity, and the dissociation rate constant is close to zero. The protein shows a low turnover rate in neurons. Conclusion: Tideglusib is an irreversible inhibitor of GSK-3. Significance: The irreversibility and the long enzyme half-life may possess interesting pharmacodynamic implications.
Knowledge of the interactions between MHC-unrestricted cytotoxic effector cells and solid tumour cells is essential for introducing more effective NK cell-based immunotherapy protocols into clinical practise. Here, to begin to obtain an overview of the possible universe of molecules that could be involved in the interactions between immune effector cells and melanoma, we analyse the surface expression of adhesion and costimulatory molecules and of ligands for NK-activating receptors on a large panel of cell lines from the "European Searchable Tumour Cell Line and Data Bank" (ESTDAB, http://www.ebi.ac.uk/ipd/estdab/ ) and discuss their potential role in the immune response against this tumour. We show that most melanoma cell lines express not only adhesion molecules that are likely to favour their interaction with cells of the immune system, but also their interaction with endothelial cells potentially increasing their invasiveness and metastatic capacity. A high percentage of melanoma cell lines also express ligands for the NK-activating receptor NKG2D; whereas, the majority express MICA/B molecules, ULBP expression, however, was rarely found. In addition to these molecules, we also found that CD155 (poliovirus receptor, PVR) is expressed by the majority of melanoma cell lines, whereas CD112 (Nectin-2) expression was rare. These molecules are DNAM-1 ligands, a costimulatory molecule involved in NK cell-mediated cytotoxicity and cytokine production that also mediates costimulatory signals for triggering naïve T cell differentiation. The phenotypical characterisation of adhesion molecules and ligands for receptors involved in cell cytotoxicity on a large series of melanoma cell lines will contribute to the identification of markers useful for the development of new immunotherapy strategies.
In recent years, studies on the molecular and cellular mechanisms of immune responses against melanoma have contributed to a better understanding of how these tumours can be recognised by cytotoxic cells and the mechanisms they have developed to escape from innate and adaptive immunity. Lysis of melanoma cells by natural killer (NK) cells and cytolytic T cells is the result of a fine balance between signals transmitted by activating and inhibitory receptors. In addition to the T cell receptor, these were initially described as NK cell-associated receptors (NKRs) and were later also found on subsets of T lymphocytes, particularly effector-memory and terminally differentiated CD8 T cells. An increase of NKR(+)CD8(+) T cells has been found in melanoma patients, correlating with the expansion of differentiated effector CD8(+)CD28(null) CD27(null) T cells. NKRs can regulate the lysis of target cells expressing appropriate ligands. Activating receptors recognise ligands on tumours whereas inhibitory receptors are specific for MHC class I antigens and sense missing self. Altered expression of MHC class I antigens is frequently found on melanoma cells, preventing recognition by specific cytolytic T cells but favouring NK cell recognition. Changes in the expression of NKR-ligands in melanoma contribute in explaining the differences in the capacity of cytotoxic immune cells to control melanoma growth and dissemination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.