Decomposing an input image into its intrinsic shading and reflectance components is a long-standing ill-posed problem. We present a novel algorithm that requires no user strokes and works on a single image. Based on simple assumptions about its reflectance and luminance, we first find clusters of similar reflectance in the image, and build a linear system describing the connections and relations between them. Our assumptions are less restrictive than widely-adopted Retinex-based approaches, and can be further relaxed in conflicting situations. The resulting system is robust even in the presence of areas where our assumptions do not hold. We show a wide variety of results, including natural images, objects from the MIT dataset and texture images, along with several applications, proving the versatility of our method.
Figure 1: We propose a novel method for intrinsic video decomposition, which exhibits excellent temporal coherence. Additionally, we show a varied number of related applications such as video segmentation, color transfer, stylization, recolorization, and material editing (the last three included in this image). Please refer to the accompanying video for these and all the other results shown in the paper. AbstractWe present a method to decompose a video into its intrinsic components of reflectance and shading, plus a number of related example applications in video editing such as segmentation, stylization, material editing, recolorization and color transfer. Intrinsic decomposition is an ill-posed problem, which becomes even more challenging in the case of video due to the need for temporal coherence and the potentially large memory requirements of a global approach. Additionally, user interaction should be kept to a minimum in order to ensure efficiency. We propose a probabilistic approach, formulating a Bayesian Maximum a Posteriori problem to drive the propagation of clustered reflectance values from the first frame, and defining additional constraints as priors on the reflectance and shading. We explicitly leverage temporal information in the video by building a causal-anticausal, coarse-to-fine iterative scheme, and by relying on optical flow information. We impose no restrictions on the input video, and show examples representing a varied range of difficult cases. Our method is the first one designed explicitly for video; moreover, it naturally ensures temporal consistency, and compares favorably against the state of the art in this regard.
Figure 1: The leftmost composition is generated by selecting from a dataset of 200K clip art searched with keywords: dog, tree, sun, cloud, and flower. Unfortunately, the styles of the clip art are inconsistent. Our style similarity function can be used to re-order the results of a search by style. The next three scenes are generated by fixing one element, and then searching for stylistically similar clip art with the above keywords. In each case, the additional clip art were chosen from the top twelve returned results (out of thousands). AbstractThis paper presents a method for measuring the similarity in style between two pieces of vector art, independent of content. Similarity is measured by the differences between four types of features: color, shading, texture, and stroke. Feature weightings are learned from crowdsourced experiments. This perceptual similarity enables style-based search. Using our style-based search feature, we demonstrate an application that allows users to create stylisticallycoherent clip art mash-ups.
We present a learning‐based approach for virtual try‐on applications based on a fully convolutional graph neural network. In contrast to existing data‐driven models, which are trained for a specific garment or mesh topology, our fully convolutional model can cope with a large family of garments, represented as parametric predefined 2D panels with arbitrary mesh topology, including long dresses, shirts, and tight tops. Under the hood, our novel geometric deep learning approach learns to drape 3D garments by decoupling the three different sources of deformations that condition the fit of clothing: garment type, target body shape, and material. Specifically, we first learn a regressor that predicts the 3D drape of the input parametric garment when worn by a mean body shape. Then, after a mesh topology optimization step where we generate a sufficient level of detail for the input garment type, we further deform the mesh to reproduce deformations caused by the target body shape. Finally, we predict fine‐scale details such as wrinkles that depend mostly on the garment material. We qualitatively and quantitatively demonstrate that our fully convolutional approach outperforms existing methods in terms of generalization capabilities and memory requirements, and therefore it opens the door to more general learning‐based models for virtual try‐on applications.
We present a model to measure the similarity in appearance between different materials, which correlates with human similarity judgments. We first create a database of 9,000 rendered images depicting objects with varying materials, shape and illumination. We then gather data on perceived similarity from crowdsourced experiments; our analysis of over 114,840 answers suggests that indeed a shared perception of appearance similarity exists. We feed this data to a deep learning architecture with a novel loss function, which learns a feature space for materials that correlates with such perceived appearance similarity. Our evaluation shows that our model outperforms existing metrics. Last, we demonstrate several applications enabled by our metric, including appearance-based search for material suggestions, database visualization, clustering and summarization, and gamut mapping.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.