In the current work, we present the use of two free-base and two zinc-metallated porphyrinruthenium(II) polypyridine dyads, along with two reference porphyrin derivatives, as sensitizers in both n-and p-type DSSCs and DSPECs. Two of the dyads contain the well-known Ru(bpy)3 unit (HOOC-DMP-Ru(bpy)3 and HOOC-(Zn)DMP-Ru(bpy)3), while in the other two terpyridine-Ru(Cl)-bypiridine was used (HOOC-DMP-tpy-Ru and HOOC-(Zn)DMP-tpy-Ru). In all systems, the amide-bonding motif was utilized for the connection of the counterparts comprising each dyad. Photophysical investigation of the reported systems indicated sufficient electronic interactions for the dyads in their excited states (emission measurements). The photovoltaic measurements revealed that the presence of the ruthenium complex improves the overall performance of the dyads with the most efficient dyad being HOOC-(Zn)DMP-tpy-Ru in both n-and p-type DSSCs. Consequently, HOOC-(Zn)DMP-tpy-Ru was used to fabricate n-and p-DSPECs towards the oxidation of methoxybenzyl alcohol and the reduction of CO2, respectively.
The need to detect and monitor biomolecules, especially within cells, has led to the emerging growth of fluorescent probes. One of the most commonly used labeling techniques for this purpose is reversible metallochelate coupling via a nitrilotriacetic acid (NTA) moiety. In this study, we focus on the synthesis and characterization of three new porphyrin–NTA dyads, TPP-Lys-NTA, TPP-CC-Lys-NTA, and Py 3 P-Lys-NTA composed of a porphyrin derivative covalently connected with a modified nitrilotriacetic acid chelate ligand (NTA), for possible metallochelate coupling with Ni2+ ions and histidine sequences. Emission spectroscopy studies revealed that all of the probes are able to coordinate with Ni2+ ions and consequently can be applied as fluorophores in protein/peptide labeling applications. Using two different histidine-containing peptides as His6-tag mimic, we demonstrated that the porphyrin–NTA hybrids are able to coordinate efficiently with the peptides through the metallochelate coupling process. Moving one step forward, we examined the ability of these porphyrin–peptide complexes to penetrate and accumulate in cancer cells, exploring the potential utilization of our system as anticancer agents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.